[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We propose a new credibility portfolio selection model, in which a measure of loss aversion is introduced as an objective function, joint to the expected value of the returns and the below-mean absolute semi-deviation as a risk measure. The uncertainty of the future returns is directly approximated using the historical returns on the portfolios, so the uncertain return on a given portfolio is modeled as an LR-power fuzzy variable. Quantifying the uncertainty by means of a credibility distribution allows us to measure the investors’ loss aversion as the credibility of achieving a non-positive return, which is better perceived by investors than other measures of risk. Furthermore, we analyze the relationships between the three objective functions, showing that the risk measure and the loss aversion function are practically uncorrelated. Thus, the information provided by these criteria do not overlap each other. In order to generate several non-dominated portfolios taking into account the investor’s preferences and that the problem is non-linear and non-convex, we apply up to three preference-based EMO algorithms. These algorithms allow to approximate a part of the Pareto optimal front called region of interest. We analyze three investor profiles taking into account their loss-adverse attitudes: conservative, cautious and aggressive. A computational study is performed with data of the Spanish stock market, showing the important role played by the loss aversion function to generate a diversified set of non-dominated portfolios fitting the expectations of each investor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Although IBEX35 has 35 assets, there were two assets which were not included in the index through all the time window considered.

  2. jMetal is an open source object-oriented Java-based framework for multi-objective optimization using meta-heuristic algorithms. It can be downloaded at http://jmetal.sourceforge.net/.

  3. In our computational tests, \({\mathbf {r}}\) has been set as follows. If the reference point used \({\mathbf {q}}\) is achievable, then \({\mathbf {r}} = {\mathbf {q}}\). Providing that \({\mathbf {q}}\) is unachievable, \({\mathbf {r}}\) is obtained using the worst objective function values achieved by all the solutions found in the region of interest by the algorithms in all runs.

References

  1. Anagnostopoulos, K.P., Mamanis, G.: A portfolio optimization model with three objectives and discrete variables. Comput. Oper. Res. 37(7), 1285–1297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bermudez, J.D., Segura, J.V., Vercher, E.: A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets Syst. 188, 16–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Branke, J.: Consideration of partial user preferences in evolutionary multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.) Multiobjective Optimization, Interactive and Evolutionary Approaches. Lecture Notes in Computer Science, vol. 5252, pp. 157–178. Springer, Berlin (2008)

    Chapter  MATH  Google Scholar 

  4. Branke, J., Deb, K., Miettinen, K., Slowinski, R.: Multiobjective Optimization. Interactive and Evolutionary Approaches. Lecture Notes in Computer Science, vol. 5252. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  5. Chang, T.J., Yang, S.C., Chang, K.J.: Portfolio optimization problems in different risk measures using genetic algorithm. Expert Syst. Appl. 36(7), 10529–10537 (2009)

    Article  Google Scholar 

  6. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  7. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  8. Deb, K., Miettinen, K.: Nadir point estimation using evolutionary approaches: better accuracy and computational speed through focused search. In: Ehrgott, M., Naujoks, B., Stewart, T.J., Wallenius, J. (eds.) Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 339–354. Springer, Berlin (2010)

    Chapter  MATH  Google Scholar 

  9. Deb, K., Miettinen, K., Chaudhuri, S.: Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans. Evol. Comput. 14(6), 821–841 (2010)

    Article  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets, vol. 7. Springer, New York (2000)

    Book  MATH  Google Scholar 

  12. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)

    Article  Google Scholar 

  13. Ehrgott, M., Klamroth, K., Schwehm, C.: An MCDM approach to portfolio optimization. Eur. J. Oper. Res. 155(3), 752–770 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: International Conference on Genetic Algorithms, pp. 416–423. Morgan Kaufmann Publishers Inc. (1993)

  15. Huang, X.: Mean-semivariance models for fuzzy portfolio selection. J. Comput. Appl. Math. 217(1), 1–8 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jalota, H., Thakur, M., Mittal, G.: Modelling and constructing membership function for uncertain portfolio parameters: a credibilistic framework. Expert Syst. Appl. 71, 40–56 (2017)

    Article  Google Scholar 

  17. Jaszkiewicz, A., Branke, J.: Interactive multiobjective evolutionary algorithms. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.) Multiobjective Optimization, Interactive and Evolutionary Approaches. Lecture Notes in Computer Science, vol. 5252, pp. 179–193. Springer, Berlin (2008)

    Chapter  Google Scholar 

  18. Li, X., Qin, Z., Kar, S.: Mean-variance-skewness model for portfolio selection with fuzzy returns. Eur. J. Oper. Res. 202(1), 239–247 (2010)

    Article  MATH  Google Scholar 

  19. Liu, B.: A survey of credibility theory. Fuzzy Optim. Decis. Making 5, 387–408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10(4), 445–450 (2002)

    Article  Google Scholar 

  21. Markowitz, H.M.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  22. Metaxiotis, K., Liagkouras, K.: Multiobjective evolutionary algorithms for portfolio management: a comprehensive literature review. Expert Syst. Appl. 39(14), 11685–11698 (2012)

    Article  Google Scholar 

  23. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  24. Molina, J., Santana, L.V., Hernandez-Diaz, A.G., Coello, C.A.C., Caballero, R.: g-dominance: reference point based dominance for multiobjective metaheuristics. Eur. J. Oper. Res. 197(2), 685–692 (2009)

    Article  MATH  Google Scholar 

  25. Moral-Escudero, R., Ruiz-Torrubiano, R., Suarez, A.: Selection of optimal investment portfolios with cardinality constraints. In: IEEE Congress on Evolutionary Computation, pp. 2382–2388 (2006)

  26. Ormos, M., Timotity, D.: Generalized asset pricing: expected downside risk-based equilibrium modeling. Econ. Model. 52, 967–980 (2016)

    Article  Google Scholar 

  27. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26(7), 1443–1471 (2002)

    Article  Google Scholar 

  28. Rodriguez, R., Luque, M., Gonzalez, M.: Portfolio selection in the Spanish stock market by interactive multiobjective programming. TOP 19(1), 213–231 (2011)

    Article  Google Scholar 

  29. Ruiz, A.B., Saborido, R., Bermudez, J.D., Luque, M., Vercher, E.: Preference-based evolutionary multi-objective optimization for solving fuzzy portfolio selection problems. Revista Electronica de Comunicaciones y Trabajos de ASEPUMA. Rect@ 18, 1–15 (2017)

  30. Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J. Global Optim. 62(1), 101–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saborido, R., Ruiz, A.B., Bermudez, J.D., Vercher, E., Luque, M.: Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Appl. Soft Comput. 39, 48–63 (2016)

    Article  Google Scholar 

  32. Steuer, R.E., Qi, Y., Hirschberger, M.: Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Ann. Oper. Res. 152, 297–317 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vercher, E., Bermudez, J.D.: Fuzzy portfolio selection models: a numerical study. In: Doumpos, M., Zopounidis, C., Pardalos, P.M. (eds.) Financial Decision Making Using Computational Intelligence. Springer Optimization and Its Applications, vol. 70, pp. 253–280. Springer, Boston (2012)

    Chapter  Google Scholar 

  34. Vercher, E., Bermudez, J.D.: A possibilistic mean-downside risk-skewness model for efficient portfolio selection. IEEE Trans. Fuzzy Syst. 21(3), 585–595 (2013)

    Article  Google Scholar 

  35. Vercher, E., Bermudez, J.D.: Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Syst. Appl. 42, 7121–7131 (2015)

    Article  Google Scholar 

  36. Vercher, E., Bermudez, J.D.: Measuring uncertainty in the portfolio selection problem. Studies in systems, decision and control. In: Gil, E., Gil, E., Gil, J., Gil, M.A. (eds.) The Mathematics of the Uncertainty, vol. 142, pp. 765–775. Springer, Cham (2018)

    Chapter  Google Scholar 

  37. Vercher, E., Bermudez, J.D., Segura, J.V.: Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets Syst. 158, 769–782 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, S., Xia, Y.: Portfolio Selection and Asset Pricing. Lecture Notes in Economics and Mathematical Systems, vol. 514. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  39. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the Strength Pareto Approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  41. Zopounidis, C., Doumpos, M.: Multicriteria decision systems for financial problems. TOP 21(2), 241–261 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Ana B. Ruiz is recipient of a Post-Doctoral fellowship of “Captación de Talento para la Investigación” at Universidad de Málaga (Spain). Rubén Saborido is a Post-Doctoral fellow at Concordia University (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enriqueta Vercher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been supported by the Spanish Ministry of Economy and Competitiveness (Projects ECO2017-88883-R and MTM2017-83850-P), co-financed by FEDER funds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, A.B., Saborido, R., Bermúdez, J.D. et al. Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences. J Glob Optim 76, 295–315 (2020). https://doi.org/10.1007/s10898-019-00782-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00782-1

Keywords

Navigation