Abstract
Semidefinite programming (SDP) relaxations have been intensively used for solving discrete quadratic optimization problems, in particular in the binary case. For the general non-convex integer case with box constraints, the branch-and-bound algorithm Q-MIST has been proposed by Buchheim and Wiegele (Math Program 141(1–2):435–452, 2013), which is based on an extension of the well-known SDP-relaxation for max-cut. For solving the resulting SDPs, Q-MIST uses an off-the-shelf interior point algorithm. In this paper, we present a tailored coordinate ascent algorithm for solving the dual problems of these SDPs. Building on related ideas of Dong (SIAM J Optim 26(3):1962–1985, 2016), it exploits the particular structure of the SDPs, most importantly a small rank of the constraint matrices. The latter allows both an exact line search and a fast incremental update of the inverse matrices involved, so that the entire algorithm can be implemented to run in quadratic time per iteration. Moreover, we describe how to extend this approach to a certain two-dimensional coordinate update. Finally, we explain how to include arbitrary linear constraints into this framework, and evaluate our algorithm experimentally.
Similar content being viewed by others
References
Alizadeh, F., Haeberly, J.P., Overton, M.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77(1), 111–128 (1997)
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)
Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research and Management Science, vol. 166. Springer, New York (2012)
Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)
Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed-integer programs. Math. Program. 131(1–2), 381–401 (2012)
Boas, P.V.E.: Another NP-complete problem and the complexity of computing short vectors in a lattice. Technical report, University of Amsterdam, Department of Mathematics, Amsterdam (1981)
Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5, 186–204 (2008)
Bonami, P., Gunluk, O., Linderoth, J.: Solving box-constrained nonconvex quadratic programs. Technical report, Optimization online (2016)
Borchers, B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11(1–4), 613–623 (1999)
Buchheim, C., Caprara, A., Lodi, A.: An effective branch-and-bound algorithm for convex quadratic integer programming. Math. Program. 135(1–2), 369–395 (2012)
Buchheim, C., De Santis, M., Lucidi, S., Rinaldi, F., Trieu, L.: A feasible active set method with reoptimization for convex quadratic mixed-integer programming. SIAM J. Optim. 26(3), 1695–1714 (2016)
Buchheim, C., Hübner, R., Schöbel, A.: Ellipsoid bounds for convex quadratic integer programming. SIAM J. Optim. 25(2), 741–769 (2015)
Buchheim, C., Montenegro, M., Wiegele, A.: A coordinate ascent method for solving semidefinite relaxations of non-convex quadratic integer programs. In: Cerulli, R., Fujishige, S., Mahjoub, A. (eds.) ISCO. Lecture Notes in Computer Science, vol. 9849, pp. 110–122. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-45587-7
Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-integer programming. Math. Program. 141(1–2), 435–452 (2013)
Burer, S., Letchford, A.: On nonconvex quadratic programming with box constraints. SIAM J. Optim. 20(2), 1073–1089 (2009)
Burer, S., Monteiro, R.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. (Ser. B) 95, 2003 (2001)
Burer, S., Vandenbussche, D.: Solving lift-and-project relaxations of binary integer programs. SIAM J. Optim. 16(3), 726–750 (2006). https://doi.org/10.1137/040609574
Burer, S., Vandenbussche, D.: Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Comput. Optim. Appl. 43(2), 181–195 (2009)
Dong, H.: Relaxing nonconvex quadratic functions by multiple adaptive diagonal perturbations. SIAM J. Optim. 26(3), 1962–1985 (2016)
Grippo, L., Palagi, L., Piccialli, V.: An unconstrained minimization method for solving low-rank SDP relaxations of the maxcut problem. Math. Program. 126(1), 119–146 (2011)
Helmberg, C.: Semidefinite programming for combinatorial optimization. Professorial dissertation, Technische Univertität Berlin, Berlin (2000)
Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10(3), 673–696 (2000)
Helmberg, C., Rendl, F., Weismantel, R.: A semidefinite programming approach to the quadratic knapsack problem. J. Comb. Optim. 4(2), 197–215 (2000)
Homer, S., Peinado, M.: Design and performance of parallel and distributed approximation algorithms for maxcut. J. Parallel Distributed Comput. 46(1), 48–61 (1997)
Kim, S., Kojima, M., Toh, K.C.: A Lagrangian-DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems. Math. Program. 156(1–2 (A)), 161–187 (2016). https://doi.org/10.1007/s10107-015-0874-5
Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20(1), 336–356 (2009). https://doi.org/10.1137/070704575
Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59, 503–526 (2014)
Montenegro, M.: A coordinate ascent method for solving semidefinite relaxations of non-convex quadratic integer programs. Phd thesis, Technische Universität Dortmund (2017)
Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)
Park, J., Boyd, S.: A semidefinite programming method for integer convex quadratic minimization. Optim. Lett. 12, 499–518 (2017)
Pisinger, D.: The quadratic knapsack problem a survey. Discrete Appl. Math. 155(5), 623–648 (2007)
Poljak, S., Rendl, F.: Solving the max-cut problem using eigenvalues. Discrete Appl. Math. 62(1), 249–278 (1995)
Sahinidis, N.V.: BARON 16.3.4: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual (2016)
Sun, D., Toh, K.C., Yang, L.: A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25(2), 882–915 (2015). https://doi.org/10.1137/140964357
Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)
Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput. 2(3–4), 203–230 (2010). https://doi.org/10.1007/s12532-010-0017-1
Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. International Series in Operations Research and Management Science. Kluwer Academic, Boston (2000)
Zhao, X.Y., Sun, D., Toh, K.C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20(4), 1737–1765 (2010). https://doi.org/10.1137/080718206
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by the Marie Curie Initial Training Network MINO (Mixed-Integer Nonlinear Optimization) funded by the European Union. The first and the second author were partially supported by the DFG under Grant BU 2313/4-2. This paper is based on the PhD thesis [28]; a preliminary version can be found in [13].
Rights and permissions
About this article
Cite this article
Buchheim, C., Montenegro, M. & Wiegele, A. SDP-based branch-and-bound for non-convex quadratic integer optimization. J Glob Optim 73, 485–514 (2019). https://doi.org/10.1007/s10898-018-0717-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-018-0717-z