[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A polynomial-time nearly-optimal algorithm for an edge coloring problem in outerplanar graphs

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Given a graph G, we study the problem of finding the minimum number of colors required for a proper edge coloring of G such that any pair of vertices at distance 2 have distinct sets consisting of colors of their incident edges. This minimum number is called the 2-distance vertex-distinguishing index, denoted by \(\chi '_{d2}(G)\). Using the breadth first search method, this paper provides a polynomial-time algorithm producing nearly-optimal solution in outerplanar graphs. More precisely, if G is an outerplanar graph with maximum degree \(\varDelta \), then the produced solution uses colors at most \(\varDelta +8\). Since \(\chi '_{d2}(G)\ge \varDelta \) for any graph G, our solution is within eight colors from optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akbari, S., Bidkhori, H., Nosrati, N.: \(r\)-Strong edge colorings of graphs. Discrete Math. 306, 3005–3010 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balister, P.N., Győri, E., Lehel, J., Schelp, R.H.: Adjacent vertex distinguishing edge-colorings. SIAM J. Discrete Math. 21, 237–250 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazgan, C., Harkat-Benhamdine, A.H., Li, H., Woźniak, M.: On the vertex-distinguishing proper edge-colorings of graphs. J. Comb. Theory Ser. B 75, 288–301 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burris, A.C.: Vertex-distinguishingedge-colorings. Ph.D. Dissertation, Memphis State University (1993)

  5. Burris, A.C., Schelp, R.H.: Vertex-distinguishing proper edge-colorings. J. Graph Theory 26, 73–82 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calamoneri, T., Petreschi, R.: \(L(h,1)\)-labeling subclasses of planar graphs. J. Parallel. Distrib. Comput. 64, 414–426 (2004)

    Article  MATH  Google Scholar 

  7. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poincaŕe Sect. B (N.S.) 3, 433–438 (1967)

    MathSciNet  MATH  Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  9. Hatami, H.: \(\varDelta +300\) is a bound on the the adjacent vertex distinguishing edge chromatic number. J. Comb. Theory Ser. B 95, 246–256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Horňák, M., Huang, D., Wang, W.: On neighbor-distinguishing index of planar graphs. J. Graph Theory 76, 262–278 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kemnitz, A., Marangio, M.: \(d\)-Strong edge colorings of graphs. Graphs Comb. 30, 183–195 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mockovčiakvá, M., Soták, R.: Arbitrarily large difference between \(d\)-strong chromatic index and its trivial lower bound. Discrete Math. 313, 2000–2006 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, W., Wang, Y., Huang, D., Wang, Y.: 2-Distance vertex-distinguishing edge coloring of graphs. Discrete Appl. Math. (Submitted) (2015)

  14. Wang, W., Yue, X., Zhu, X.: The surviving rate of an outerplanar graph for the firefighter problem. Theor. Comput. Sci. 412, 913–921 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, Y., Wang, W., Huo, J.: Some bounds on the neighbor-distinguishing index of graphs. Discrete Math. 338, 2006–2013 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, Z., Liu, L., Wang, J.: Adjacent strong edge coloring of graphs. Appl. Math. Lett. 15, 623–626 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, Z., Li, J., Chen, X., Cheng, H., Yao, B.: \(D(\beta )\)-vertex-distinguishing proper edge-coloring of graphs. Acta Math. Sinica (Chin. Ser.) 49, 703–708 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifan Wang, Danjun Huang or Ding-Zhu Du.

Additional information

Weifan Wang: Research supported by NSFC (No. 11371328).

Danjun Huang: Research supported by NSFC (Nos. 11301486, 11401535) and ZJNSFC (No. LQ13A010009).

Yiqiao Wang: Research supported by NSFC (No. 11301035).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Huang, D., Wang, Y. et al. A polynomial-time nearly-optimal algorithm for an edge coloring problem in outerplanar graphs. J Glob Optim 65, 351–367 (2016). https://doi.org/10.1007/s10898-015-0360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0360-x

Keywords

Navigation