[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Second-order conditions for existence of augmented Lagrange multipliers for eigenvalue composite optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we mainly consider the augmented Lagrangian duality theory and explore second-order conditions for the existence of augmented Lagrange multipliers for eigenvalue composite optimization problems. In the approach, we reformulate the augmented Lagrangian introduced by Rockafellar into a new form in terms of the Moreau envelope function and characterize second-order conditions via the epi-derivatives of the augmented Lagrangian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)

    Book  Google Scholar 

  2. Bellman, R.: Introduction to Matrix Analysis, 2nd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  3. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  4. Cullum, J., Donath, W.E., Wolfe, P.: The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices. Math. Program. Study 3, 35–55 (1975)

    Article  MathSciNet  Google Scholar 

  5. Fernández, D., Solodov, M.V.: Local convergence of exact and inexact augmented Lagrangian methods under the second-order sufficient optimality condition. SIAM J. Optim. 22, 384–407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fletcher, R.: Semi-definite matrix constraints in optimization. SIAM J. Control Optim. 23, 493–513 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1987)

    MATH  Google Scholar 

  8. Friedland, S.: Convex spectral functions. Linear Multilinear Algebra 9, 299–316 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Do, Chi Ngoc: Generalized second-order derivatives of convex function in reflexive Banach spaces. Trans. Amer. Math. Soc. 334, 281–301 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haug, E.J., Rousselet, B.: Design sensitivity analysis in structural mechanics II: eigenvalue variation. J. Struct. Mech. 8, 161–186 (1980)

    Article  MathSciNet  Google Scholar 

  12. Hiriart-Urruty, J.-B., Ye, D.: Sensitivity analysis of all eigenvalues of a symmetric matrix. Numer. Math. 70, 45–72 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lewis, A.S.: Derivatives of spectral functions. Math. Oper. Res. 21, 576–588 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lewis, A.S., Sendov, H.S.: Twice differentiable spectral functions. SIAM. J. Matrix Anal. Appl. 23, 368–386 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, Y.J., Zhang, L.W.: Convergence analysis of the augmented Lagrangian method for nonlinear second-order cone optimization problem. Nonlinear Anal. 67, 1359–1373 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Overton, M.L.: On minimizing the maximum eigenvalue of a symmetric matrix. SIAM J. Matrix Anal. Appl. 9, 256–268 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Overton, M.L.: Large-scale optimization of eigenvalues. SIAM J. Optim. 2, 88–120 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Overton, M.L., Womersley, R.S.: Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmtric matrix. Math. Program. Ser. B 62, 321–357 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Amer. Math. Soc. 348, 1805–1838 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Poliquin, R., Rockafellar, R.T.: Generalized Hessian properties of regularized nonsmooth functions. SIAM J. Optim. 6, 1121–1137 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control 12, 268–285 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rockafellar, R.T.: Conjugate duality and optimization, regional conference series in applied mathematics. SIAM, Philadelphia (1974)

  23. Rockafellar, R.T.: First- and second-order epi-differentiability in nonlinear programming. Trans. Amer. Math. Soc. 307, 75–108 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rockafellar, R.T.: Generalized second derivatives of convex functions and saddle function. Trans. Amer. Math. Soc. 322, 51–77 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35, 183–238 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T.: Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives. Math. Oper. Res. 14, 462–484 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)

    Book  MATH  Google Scholar 

  28. Shapiro, A., Sun, J.: Some properties of the augmented Lagrangian in cone constrained optimization. Math. Oper. Res. 29, 479–491 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shapiro, A.: Perturbation theory of nonlinear programs when the set of optimal solutions is not a singleton. Appl. math. Optim. 18, 215–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shapiro, A., Fan, M.K.H.: On eigenvalue optimization. SIAM J. Optim. 3, 552–568 (1995)

    Article  MathSciNet  Google Scholar 

  31. Torki, M.: Second-order directional derivatives of all eigenvalues of a symmetric matrix. Nonlinear Anal. Ser. A Methods 46, 1133–1150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Torki, M.: First- and second-order epi-differentiability in eigenvalue optimization. J. Math. Anal. Appl. 234, 391–416 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wielandt, H.: An extremum property of sums of eigenvalues. Proc. Amer. Math. Soc. 6, 106–110 (1955)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Boris S. Mordukhovich for his careful reading and constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Song.

Additional information

Wen Song, the research of the second author was partly supported by the National Natural Sciences Grant (No. 11371116) and by the Foundation of Heilongjiang Provincial Educational Department (No. 12521147).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, C., Song, W. Second-order conditions for existence of augmented Lagrange multipliers for eigenvalue composite optimization problems. J Glob Optim 63, 77–97 (2015). https://doi.org/10.1007/s10898-015-0273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0273-8

Keywords

Navigation