[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Constrained derivative-free optimization on thin domains

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Many derivative-free methods for constrained problems are not efficient for minimizing functions on “thin” domains. Other algorithms, like those based on Augmented Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints are computationally inexpensive but highly nonlinear, these methods spend many potentially expensive objective function evaluations motivated by the difficulties in improving feasibility. An algorithm that handles this case efficiently is proposed in this paper. The main iteration is split into two steps: restoration and minimization. In the restoration step, the aim is to decrease infeasibility without evaluating the objective function. In the minimization step, the objective function f is minimized on a relaxed feasible set. A global minimization result will be proved and computational experiments showing the advantages of this approach will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreani R., Birgin E.G., Martínez J.M., Schuverdt M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2007)

    Article  Google Scholar 

  2. Anonymous: A new algorithm for optimization. Math. Program. 1, 124–128 (1972)

  3. Audet C., Dennis J.E. Jr.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)

    Article  Google Scholar 

  4. Audet C., Dennis J.E. Jr.: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim. 20(1), 445–472 (2009)

    Article  Google Scholar 

  5. Audet C., Dennis J.E. Jr., Le Digabel S.: Globalization strategies for Mesh Adaptive Direct Search. Comput. Optim. Appl. 46(2), 193–215 (2010)

    Article  Google Scholar 

  6. Banerjia C., Dwyer R.A.: Generating random points in a ball. Commun. Stat. Simul. Comput. 22(4), 1205–1209 (1993)

    Article  Google Scholar 

  7. Bielschowsky R.H., Gomes F.A.M.: Dynamic control of infeasibility in equality constrained optimization. SIAM J. Optim. 19(3), 1299–1325 (2008)

    Article  Google Scholar 

  8. Birgin E.G., Floudas C.A., Martínez J.M.: Global minimization using an augmented Lagrangian method with variable lower-level constraints. Math. Program. 125(1), 139–162 (2010)

    Article  Google Scholar 

  9. Birgin E.G., Martínez J.M.: Local convergence of an inexact-restoration method and numerical experiments. J. Optim. Theory. Appl. 127, 229–247 (2005)

    Article  Google Scholar 

  10. Conn A.R., Gould N.I.M., Toint Ph.L.: Lancelot: A FORTRAN package for large-scale nonlinear optimization (Release A). Springer Publishing Company, Incorporated (2010)

    Google Scholar 

  11. Conn A.R., Scheinberg K., Toint Ph.L.: Recent progress in unconstrained nonlinear optimization without derivatives. Math. Program. 79(3), 397–414 (1997)

    Google Scholar 

  12. Conn, A. R., Scheinberg, K., and Toint, Ph. L.: A derivative free optimization algorithm in practice. In: Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO (1998)

  13. Conn A.R., Scheinberg K., Vicente L.N.: Introduction to Derivative-Free Optimization, MPS-SIAM Series on Optimization. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  14. Custódio A.L., Vicente L.N.: Using sampling and simplex derivatives in pattern search methods. SIAM J. Optim. 18(2), 537–555 (2007)

    Article  Google Scholar 

  15. Diniz-Ehrhardt M.A., Martínez J.M., Pedroso L.G.: Derivative-free methods for nonlinear programming with general lower-level constraints. Comput. Appl. Math. 30, 19–52 (2011)

    Google Scholar 

  16. Dolan E.D., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Program. Ser. A 91(2), 201–213 (2002)

    Article  Google Scholar 

  17. Gould N.I.M., Toint Ph.L.: Nonlinear programming without a penalty function or a filter. Math. Program. 122(1), 155–196 (2010)

    Article  Google Scholar 

  18. Griffin J.D., Kolda T.G.: Nonlinearly-constrained optimization using heuristic penalty methods and asynchronous parallel generating set search. Appl. Math. Res. Express. AMRX 2010(1), 36–62 (2010)

    Google Scholar 

  19. Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1981)

  20. Kolda T.G., Lewis R.M., Torczon V.: Stationarity results for generating set search for linearly constrained optimization. SIAM J. Optim. 17(4), 943–968 (2006)

    Article  Google Scholar 

  21. Lewis R.M., Torczon V.: Pattern search algorithms for bound constrained minimization. SIAM J. Optim. 9(4), 1082–1099 (1999)

    Article  Google Scholar 

  22. Lewis R.M., Torczon V.: Pattern search algorithms for linearly constrained minimization. SIAM J. Optim. 10(3), 917–941 (2000)

    Article  Google Scholar 

  23. Lewis R.M., Torczon V.: A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM J. Optim. 12(4), 1075–1089 (2002)

    Article  Google Scholar 

  24. Le Digabel, S.: Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM Trans.Math.Softw. 37(4), 44:1–44:15 (2011)

  25. Lewis, R. M., Torczon, V.: A direct search approach to nonlinear programming problems using an augmented Lagrangian method with explicit treatment of linear constraints. Technical Report WM-CS-2010-01, College of William & Mary, Department of Computer Science (2010)

  26. Martínez J.M.: Inexact restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming. J. Optim. Theory. Appl. 111, 39–58 (2001)

    Article  Google Scholar 

  27. Martínez J.M., Pilotta E.A.: Inexact restoration algorithms for constrained optimization. J. Optim. Theory. Appl. 104, 135–163 (2000)

    Article  Google Scholar 

  28. Moré J.J., Wild S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)

    Article  Google Scholar 

  29. Muller M.E.: A note on a method for generating points uniformly on N-dimensional spheres. Commun. ACM 2, 19–20 (1959)

    Article  Google Scholar 

  30. Nelder J.A., Mead R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  Google Scholar 

  31. Paviani D.A., Himmelblau D.M.: Constrained nonlinear optimization by heuristic programming. Oper. Res. 17, 872–882 (1969)

    Article  Google Scholar 

  32. Pedroso, L.G.: Programação não linear sem derivadas. PhD thesis, State University of Campinas, Brazil, (2009). (in Portuguese)

  33. Plantenga, T.D.: HOPSPACK 2.0 User Manual. Sandia National Laboratories, Albuquerque, NM and Livermore, CA, SAND2009-6265 (2009)

  34. Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge (2009)

  35. Schrage L.: A more portable Fortran random number generator. ACM Trans. Math. Softw. 5(2), 132–139 (1979)

    Article  Google Scholar 

  36. Torczon V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)

    Article  Google Scholar 

  37. Vicente L.N., Custódio A.L.: Analysis of direct searches for discontinuous functions. Math. Program. 133(1–2), 299–325 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. N. C. Sobral.

Additional information

This work was supported by PRONEX-CNPq/FAPERJ Grant E-26/171.164/2003-APQ1, FAPESP Grants 03/09169-6, 06/53768-0 and 08/00468-4, and CNPq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, J.M., Sobral, F.N.C. Constrained derivative-free optimization on thin domains. J Glob Optim 56, 1217–1232 (2013). https://doi.org/10.1007/s10898-012-9944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9944-x

Keywords

Navigation