Abstract
Many derivative-free methods for constrained problems are not efficient for minimizing functions on “thin” domains. Other algorithms, like those based on Augmented Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints are computationally inexpensive but highly nonlinear, these methods spend many potentially expensive objective function evaluations motivated by the difficulties in improving feasibility. An algorithm that handles this case efficiently is proposed in this paper. The main iteration is split into two steps: restoration and minimization. In the restoration step, the aim is to decrease infeasibility without evaluating the objective function. In the minimization step, the objective function f is minimized on a relaxed feasible set. A global minimization result will be proved and computational experiments showing the advantages of this approach will be presented.
Similar content being viewed by others
References
Andreani R., Birgin E.G., Martínez J.M., Schuverdt M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2007)
Anonymous: A new algorithm for optimization. Math. Program. 1, 124–128 (1972)
Audet C., Dennis J.E. Jr.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)
Audet C., Dennis J.E. Jr.: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim. 20(1), 445–472 (2009)
Audet C., Dennis J.E. Jr., Le Digabel S.: Globalization strategies for Mesh Adaptive Direct Search. Comput. Optim. Appl. 46(2), 193–215 (2010)
Banerjia C., Dwyer R.A.: Generating random points in a ball. Commun. Stat. Simul. Comput. 22(4), 1205–1209 (1993)
Bielschowsky R.H., Gomes F.A.M.: Dynamic control of infeasibility in equality constrained optimization. SIAM J. Optim. 19(3), 1299–1325 (2008)
Birgin E.G., Floudas C.A., Martínez J.M.: Global minimization using an augmented Lagrangian method with variable lower-level constraints. Math. Program. 125(1), 139–162 (2010)
Birgin E.G., Martínez J.M.: Local convergence of an inexact-restoration method and numerical experiments. J. Optim. Theory. Appl. 127, 229–247 (2005)
Conn A.R., Gould N.I.M., Toint Ph.L.: Lancelot: A FORTRAN package for large-scale nonlinear optimization (Release A). Springer Publishing Company, Incorporated (2010)
Conn A.R., Scheinberg K., Toint Ph.L.: Recent progress in unconstrained nonlinear optimization without derivatives. Math. Program. 79(3), 397–414 (1997)
Conn, A. R., Scheinberg, K., and Toint, Ph. L.: A derivative free optimization algorithm in practice. In: Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO (1998)
Conn A.R., Scheinberg K., Vicente L.N.: Introduction to Derivative-Free Optimization, MPS-SIAM Series on Optimization. SIAM, Philadelphia (2009)
Custódio A.L., Vicente L.N.: Using sampling and simplex derivatives in pattern search methods. SIAM J. Optim. 18(2), 537–555 (2007)
Diniz-Ehrhardt M.A., Martínez J.M., Pedroso L.G.: Derivative-free methods for nonlinear programming with general lower-level constraints. Comput. Appl. Math. 30, 19–52 (2011)
Dolan E.D., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Program. Ser. A 91(2), 201–213 (2002)
Gould N.I.M., Toint Ph.L.: Nonlinear programming without a penalty function or a filter. Math. Program. 122(1), 155–196 (2010)
Griffin J.D., Kolda T.G.: Nonlinearly-constrained optimization using heuristic penalty methods and asynchronous parallel generating set search. Appl. Math. Res. Express. AMRX 2010(1), 36–62 (2010)
Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. Springer-Verlag New York, Inc., Secaucus, NJ, USA (1981)
Kolda T.G., Lewis R.M., Torczon V.: Stationarity results for generating set search for linearly constrained optimization. SIAM J. Optim. 17(4), 943–968 (2006)
Lewis R.M., Torczon V.: Pattern search algorithms for bound constrained minimization. SIAM J. Optim. 9(4), 1082–1099 (1999)
Lewis R.M., Torczon V.: Pattern search algorithms for linearly constrained minimization. SIAM J. Optim. 10(3), 917–941 (2000)
Lewis R.M., Torczon V.: A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM J. Optim. 12(4), 1075–1089 (2002)
Le Digabel, S.: Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM Trans.Math.Softw. 37(4), 44:1–44:15 (2011)
Lewis, R. M., Torczon, V.: A direct search approach to nonlinear programming problems using an augmented Lagrangian method with explicit treatment of linear constraints. Technical Report WM-CS-2010-01, College of William & Mary, Department of Computer Science (2010)
Martínez J.M.: Inexact restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming. J. Optim. Theory. Appl. 111, 39–58 (2001)
Martínez J.M., Pilotta E.A.: Inexact restoration algorithms for constrained optimization. J. Optim. Theory. Appl. 104, 135–163 (2000)
Moré J.J., Wild S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)
Muller M.E.: A note on a method for generating points uniformly on N-dimensional spheres. Commun. ACM 2, 19–20 (1959)
Nelder J.A., Mead R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
Paviani D.A., Himmelblau D.M.: Constrained nonlinear optimization by heuristic programming. Oper. Res. 17, 872–882 (1969)
Pedroso, L.G.: Programação não linear sem derivadas. PhD thesis, State University of Campinas, Brazil, (2009). (in Portuguese)
Plantenga, T.D.: HOPSPACK 2.0 User Manual. Sandia National Laboratories, Albuquerque, NM and Livermore, CA, SAND2009-6265 (2009)
Powell, M.J.D.: The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge (2009)
Schrage L.: A more portable Fortran random number generator. ACM Trans. Math. Softw. 5(2), 132–139 (1979)
Torczon V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)
Vicente L.N., Custódio A.L.: Analysis of direct searches for discontinuous functions. Math. Program. 133(1–2), 299–325 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by PRONEX-CNPq/FAPERJ Grant E-26/171.164/2003-APQ1, FAPESP Grants 03/09169-6, 06/53768-0 and 08/00468-4, and CNPq.
Rights and permissions
About this article
Cite this article
Martínez, J.M., Sobral, F.N.C. Constrained derivative-free optimization on thin domains. J Glob Optim 56, 1217–1232 (2013). https://doi.org/10.1007/s10898-012-9944-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-012-9944-x