[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Handelman rank of zero-diagonal quadratic programs over a hypercube and its applications

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

It has been observed that the Handelman’s certificate of positivity of a polynomial over a compact polyhedron offers a hierarchical relaxation scheme for polynomial programs. The Handelman hierarchy seems particularly suitable for a class of combinatorial optimizations that are formulated as a zero-diagonal quadratic program over a hypercube. In this paper, we present an error analysis of Handelman hierarchy applied to the special class of polynomial programs and its implications in the computation of the combinatorial optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arora, S., Bollobás, B., Lovász, L.: Proving integrality gaps without knowing the linear program. In: FOCS ‘02: Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science, pp. 313–322 (2002)

  2. Balas E., Ceria S., Cornuéjols G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58(3), 295–324 (1993)

    Article  Google Scholar 

  3. Cheung K.K.H.: On Lovász-Schrijver lift-and-project procedures on the Dantzig–Fulkerson–Johnson relaxation of the TSP. SIAM J. Optim. 16(2), 380–399 (2005)

    Article  Google Scholar 

  4. Cheung K.K.H.: Computation of the Lasserre ranks of some polytopes. Math. Oper. Res. 32(1), 88–94 (2007)

    Article  Google Scholar 

  5. Cook W., Dash S.: On the matrix-cut rank of polyhedra. Math. Oper. Res. 26(1), 19–30 (2001)

    Article  Google Scholar 

  6. De Klerk E., Laurent M.: Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube. SIAM J. Optim. 20(6), 3104–3120 (2010)

    Article  Google Scholar 

  7. Handelman D.: Representing polynomials by positive linear functions on compact convex polyhedra. Pac. J. Math. 132(1), 35–62 (1988)

    Article  Google Scholar 

  8. Harant J.: Some news about the independence number of a graph. Discuss Math Graph Theory 20(1), 71–80 (2000)

    Article  Google Scholar 

  9. Hong S.-P., Tunçel L.: Unification of lower-bound analyses of the lift-and-project rank of combinatorial optimization polyhedra. Discret. Appl. Math. 156(1), 25–41 (2008)

    Article  Google Scholar 

  10. Lasserre J.B.: Semidefinite programming vs. LP relaxations for polynomial programming. Math. Oper. Res. 27(2), 347–360 (2002)

    Article  Google Scholar 

  11. Laurent M.: A Comparison of the Sherali-Admas, Lovász-Schrijver and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)

    Article  Google Scholar 

  12. Lovász L., Schrijver A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Discret. Math. 1(2), 166–190 (1991)

    Google Scholar 

  13. Park M.-J., Hong S.-P.: Rank of handelman hierarchy for max-cut. Oper. Res. Lett. 39(5), 323–328 (2011)

    Article  Google Scholar 

  14. Putinar M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  Google Scholar 

  15. Schmüdgen K.: The K-moment problem for compact semi-algebraic sets. Mathematische Annalen 289(2), 203–206 (1991)

    Article  Google Scholar 

  16. Sherali H.D., Adams W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero–one programmings. SIAM J. Discret. Math. 3(3), 411–430 (1990)

    Article  Google Scholar 

  17. Sherali H.D., Tuncbilek C.H.: A global optimization algorithm for polynomial programming problems using a reformulation linearization technique. J. Glob. Optim. 2(1), 101–112 (1992)

    Article  Google Scholar 

  18. Stephen T., Tunçel L.: On a representation of the matching polytope via semidefinite liftings. Math. Oper. Res. 24(1), 1–7 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Ju Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, MJ., Hong, SP. Handelman rank of zero-diagonal quadratic programs over a hypercube and its applications. J Glob Optim 56, 727–736 (2013). https://doi.org/10.1007/s10898-012-9906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9906-3

Keywords

Navigation