Abstract
Let E be a real reflexive strictly convex Banach space which has uniformly Gâteaux differentiable norm. Let \({\mathcal{S} = \{T(s): 0 \leq s < \infty\}}\) be a nonexpansive semigroup on E such that \({Fix(\mathcal{S}) := \cap_{t\geq 0}Fix( T(t) ) \not= \emptyset}\) , and f is a contraction on E with coefficient 0 < α < 1. Let F be δ-strongly accretive and λ-strictly pseudo-contractive with δ + λ > 1 and \({0 < \gamma < \min\left\{\frac{\delta}{\alpha}, \frac{1-\sqrt{ \frac{1-\delta}{\lambda} }}{\alpha} \right\} }\) . When the sequences of real numbers {α n } and {t n } satisfy some appropriate conditions, the three iterative processes given as follows :
and
converge strongly to \({\tilde{x}}\) , where \({\tilde{x}}\) is the unique solution in \({Fix(\mathcal{S})}\) of the variational inequality
Our results extend and improve corresponding ones of Li et al. (Nonlinear Anal 70:3065–3071, 2009) and Chen and He (Appl Math Lett 20:751–757, 2007) and many others.
Similar content being viewed by others
References
Shioji N., Takahashi W.: Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert spaces. Nonlinear Anal. 34, 87–99 (1998)
Shimizu T., Takahashi W.: Strong convergence to common fixed points of families of nonexpansive mappings. J. Math. Anal. Appl. 211, 71–83 (1997)
Chen R., Song Y.: Convergence to common fixed point of nonexpansive semigroups. J. Comput. Appl. Math. 200, 566–575 (2007)
Suzuki T.: On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces. Proc. Am. Math. Soc. 131, 2133–2136 (2002)
Benavides T.D., Acedo G.L., Xu H.K.: Construction of sunny nonexpansive retractions in Banach spaces. Bull. Aust. Math. Soc. 66(1), 9–16 (2002)
Xu H.K.: A strong convergence theorem for contraction semigroups in Banach spaces. Bull. Aust. Math. Soc. 72, 371–379 (2005)
Chen R., He H.: Viscosity approximation of common fixed points of nonexpansive semigroups in Banach space. Appl. Math. Lett. 20, 751–757 (2007)
Chen R., He H.: Modified Mann Iterations for Nonexpansive Semigroups in Banach Space. Acta Mathematica Sinica 26(1), 193–202 (2010)
Deutsch F., Yamada I.: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings. Numer. Funct. Anal. Optim. 19, 33–56 (1998)
Xu H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003)
Xu H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, Berlin (2010)
Giannessi F., Maugeri A., Pardalos Panos M. (eds): Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer, Dordrecht (2002)
Moudafi A.: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46–55 (2000)
Xu H.K.: Approximations to fixed points of contraction semigroups in Hilbert spaces. Numer. Funct. Anal. Optim. 19, 157–163 (1998)
Marino G., Xu H.K.: A general iterative method for nonexpansive mapping in Hilbert spaces. J. Math. Anal. Appl. 318, 43–52 (2006)
Li S., Li L., Su Y.: General iterative methods for a one-parameter nonexpansive semigroup in Hilbert space. Nonlinear Anal. 70, 3065–3071 (2009)
Zeidler E.: Nonlinear Functional Analysis and Its Applications. III. Springer, New York, NY, USA (1985)
Browder F.E., Petryshyn W.V.: Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 20, 197–228 (1967)
Zhou H.: Convergence theorems for λ-strict pseudo-contractions in 2-uniformly smooth Banach spaces. Nonlinear Anal. 69, 3160–3173 (2008)
Aleyner A., Censor Y.: Best approximation to common fixed points of a semigroup of nonexpansive operators. J. Nonlinear Convex Anal. 6(1), 137–151 (2005)
Aleyner A., Reich S.: An explicit construction of sunny nonexpansive retractions in Banach spaces. Fixed Point Theory Appl. 3, 295–305 (2005)
Bruck R.E.: Nonexpansive retracts of Banach spaces. Bull. Am. Math. Soc. 76, 384–386 (1970)
Reich S.: Asymptotic behavior of contractions in Banach spaces. J. Math. Anal. Appl. 44, 57–70 (1973)
Aoyama K., Kimura Y., Takahashi W., Toyoda M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)
Piri, H., Vaezi, H.: Strong convergence of a generalized iterative method for semigroups of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl. Article ID 907275, 16 pp. doi:10.1155/2010/907275. (2010)
Megginson R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)
Takahashi, W.: Nonlinear Functional Analysis- Fixed Point Theory and its Applications. Yokohama Publishers Inc., Yokohama, (Japanese) (2000)
Li X.N., Gu J.S.: Strong convergence of modified Ishikawa iteration for a nonexpansive semigroup in Banach spaces. Nonlinear Anal. 73, 1085–1092 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wangkeeree, R., Wangkeeree, R. The general iterative methods for nonexpansive semigroups in Banach spaces. J Glob Optim 55, 417–436 (2013). https://doi.org/10.1007/s10898-011-9835-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-011-9835-6
Keywords
- General iterative method
- Nonexpansive semigroup
- Reflexive Banach space
- Uniformly Gâteaux differentiable norm
- Fixed point