Abstract
Inverse problems in geophysics are usually described as data misfit minimization problems, which are difficult to solve because of various mathematical features, such as multi-parameters, nonlinearity and ill-posedness. Local optimization based on function gradient can not guarantee to find out globally optimal solutions, unless a starting point is sufficiently close to the solution. Some global optimization methods based on stochastic searching mechanisms converge in the limit to a globally optimal solution with probability 1. However, finding the global optimum of a complex function is still a great challenge and practically impossible for some problems so far. This work develops a multiscale deterministic global optimization method which divides definition space into sub-domains. Each of these sub-domains contains the same local optimal solution. Local optimization methods and attraction field searching algorithms are combined to determine the attraction basin near the local solution at different function smoothness scales. With Multiscale Parameter Space Partition method, all attraction fields are to be determined after finite steps of parameter space partition, which can prevent redundant searching near the known local solutions. Numerical examples demonstrate the efficiency, global searching ability and stability of this method.
Similar content being viewed by others
References
Bomze I.M., Csendes T., Horst R., Pardalos P.M.: Developments in Global Optimization: Nonconvex Optimization and Its Applications. Kluwer, Dordrecht (1997)
Gray, P., Hart, W., Painton, L., et al.: A Survey of Global Optimization Methods. Technical report, Sandia National Laboratories (1997)
Scales J.A., Smith M.L., Fischer T.L: Global optimization methods for multimodal inverse problems. J. Comput. Phys. 103, 258–268 (1992)
Deng, L.H., Scales, J.A.: Estimating the Topography of Multi-dimensional Fitness Functions. Colorado School of Mines (1999)
Rothman D.H.: Nonlinear inversion, statistical-mechanics, and residual statics Estimation. Geophysics 50, 2784–2796 (1985)
Rothman D.H.: Automatic estimation of large residual statics corrections. Geophysics 51, 332–346 (1986)
Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Holland J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Goldberg D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Stoffa P.L., Sen M.K.: Nonlinear multiparameter optimization using genetic algorithms—inversion of plane-wave seismograms. Geophysics 56, 1794–1810 (1991)
Sambridge M., Drijkoningen G.: Genetic algorithms in seismic wave-form inversion. Geophys. J. Int. 109, 323–342 (1992)
Gallagher K., Sambridge M., Drijkoningen G.: Genetic algorithms—an evolution from Monte-Carlo methods for strongly nonlinear geophysical optimization problems. Geophys. Res. Lett. 18, 2177–2180 (1991)
Gallagher K., Sambridge M.: Genetic algorithms—a powerful tool for large-scale nonlinear optimization problems. Comput. Geosci. 20, 1229–1236 (1994)
Sen M., Stoffa P.L.: Global Optimization Methods in Geophysical Inversion. Elsevier, Amsterdam (1995)
Gill P.E., Murray W., Wright M.H.: Practical Optimization. Academic Press, New York (1981)
Granville V., Krivanek M., Rasson J.P.: Simulated annealing—a proof of convergence. IEEE Trans. Pattern Anal. Mach. Intell. 16, 652–656 (1994)
Greenhalgh D., Marshall S.: Convergence criteria for genetic algorithms. SIAM J. Comput. 30, 269–282 (2000)
Locatelli M.: Convergence and first hitting time of simulated annealing algorithms for continuous global optimization. Math. Methods Oper. Res. 54, 171–199 (2001)
Locatelli M.: Convergence of a simulated annealing algorithm for continuous global optimization. J. Glob. Optim. 18, 219–234 (2000)
Locatelli M.: Simulated annealing algorithms for continuous global optimization: convergence conditions. J. Optim. Theory Appl. 104, 121–133 (2000)
Locatelli M.: Convergence properties of simulated annealing for continuous global optimization. J. Appl. Probab. 33, 1127–1140 (1996)
Belisle C.J.P.: Convergence theorems for a class of simulated annealing algorithms on R(D). J. Appl. Probab. 29, 885–895 (1992)
Fallat M.R., Dosso S.E.: Geoacoustic inversion via local, global, and hybrid algorithms. J. Acoust. Soc. Am. 105, 3219–3230 (1999)
Liu P.C., Hartzell S., Stephenson W.: Nonlinear multiparameter inversion using a hybrid global search algorithm—applications in reflection seismology. Geophys. J. Int. 122, 991–1000 (1995)
Cary P.W., Chapman C.H.: Automatic 1-D waveform inversion of marine seismic refraction data. Geophys. J. Int. 93, 527–546 (1988)
Gerstoft P.: Inversion of acoustic data using a combination of genetic algorithms and the Gauss–Newton approach. J. Acoust. Soc. Am. 97, 2181–2190 (1995)
Hibbert D.B.: A hybrid genetic algorithm for the estimation of kinetic-parameters. Chemometr. Intell. Lab. 19, 319–329 (1993)
Chunduru R.K., Sen M.K., Stoffa P.L.: Hybrid optimization methods for geophysical inversion. Geophysics 62, 1196–1207 (1997)
Calderon-Macias C., Sen M.K., Stoffa P.L.: Artificial neural networks for parameter estimation in geophysics. Geophys. Prospect. 48, 21–47 (2000)
Chelouah R., Siarry P.: A hybrid method combining continuous tabu search and Nelder–Mead simplex algorithms for the global optimization of multiminima functions. Eur. J. Oper. Res. 161, 636–654 (2005)
Gil C., Marquez A., Banos R. et al.: A hybrid method for solving multi-objective global optimization problems. J. Glob. Optim. 38, 265–281 (2007)
Olensek J., Burmen A., Puhan J., Tuma T.: DESA: a new hybrid global optimization method and its application to analog integrated circuit sizing. J. Glob. Optim. 44, 53–77 (2009)
Yiu K.F.C., Liu Y., Teo K.L.: A hybrid descent method for global optimization. J. Glob. Optim. 28, 229–238 (2004)
Xu P.L.: A hybrid global optimization method: the multi-dimensional case. J. Comput. Appl. Math. 155, 423–446 (2003)
Hedar A.R., Fukushima M.: Hybrid simulated annealing and direct search method for nonlinear unconstrained global optimization. Optim. Methods Softw. 17, 891–912 (2002)
Barhen J., Protopopescu V., Reister D.: TRUST: a deterministic algorithm for global optimization. Science 276, 1094–1097 (1997)
Basso P.: Iterative methods for the localization of the global maximum. SIAM J. Numer. Anal. 19, 781–792 (1982)
Shubert B.O.: Sequential method seeking global maximum of a function. SIAM J. Numer. Anal. 9, 379–388 (1972)
Floudas C.: Global Optimization: Theory, Methods and Applications. Kluwer, Dordrecht (2000)
Hansen E.: Global optimization using interval-analysis—the multidimensional case. Numer. Math. 34, 247–270 (1980)
Hansen E.R.: Global optimization using interval analysis— one-dimensional case. J. Optim. Theory Appl. 29, 331–344 (1979)
Hansen E.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)
Ichida K., Fujii Y.: Interval arithmetic method for global optimization. Computing 23, 85–97 (1979)
Kearfott R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)
Ratschek H., Rokne J.: New Computer Methods for Global Optimization. Ellis Horwood, Chichester (1988)
Tarvainen M., Tiira T., Husebye E.S.: Locating regional seismic events with global optimization based on interval arithmetic. Geophys. J. Int. 138, 879–885 (1999)
Land A.H., Doig A.G.: An automatic method for solving discrete programming problems. Econometrica 28, 497–520 (1960)
Clausen, J.: Branch and bound algorithms—principles and examples. In: Department of Computer Science, University of Copenhagen (1999, March)
Tawarmalani M., Sahinidis N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer, Boston (2002)
Khajavirad, A., Michalek, J.J.: A deterministic Lagrangian-based global optimization approach for quasiseparable nonconvex mixed-integer nonlinear programs. J. Mech. Design 131, 051009 (8pp)
Qu S.J., Ji Y., Zhang K.C.: A deterministic global optimization algorithm based on a linearizing method for nonconvex quadratically constrained programs. Math. Comput. Model. 48, 1737–1743 (2008)
Jiao H.W., Chen Y.Q.: A note on a deterministic global optimization algorithm. Appl. Math. Comput. 202, 67–70 (2008)
Wu Y., Lai K.K., Liu Y.J.: Deterministic global optimization approach to steady-state distribution gas pipeline networks. Optim. Eng. 8, 259–275 (2007)
Long C.E., Polisetty P.K., Gatzke E.P.: Deterministic global optimization for nonlinear model predictive control of hybrid dynamic systems. Int. J. Robust Nonlinear Control 17, 1232–1250 (2007)
Lin Y.D., Stadtherr M.A.: Deterministic global optimization of nonlinear dynamic systems. AICHE J. 53, 866–875 (2007)
Ji Y., Zhang K.C., Qu S.H.: A deterministic global optimization algorithm. Appl. Math. Comput. 185, 382–387 (2007)
Lin Y., Stadtherr M.A.: Deterministic global optimization for parameter estimation of dynamic systems. Ind Eng Chem Res 45, 8438–8448 (2006)
Long C.E., Polisetty P.K., Gatzke E.P.: Nonlinear model predictive control using deterministic global optimization. J. Process Control 16, 635–643 (2006)
Lin Y.D., Stadtherr M.A.: Deterministic global optimization of molecular structures using interval analysis. J. Comput. Chem. 26, 1413–1420 (2005)
Sun, W.T., Shu, J.W., Zheng, W.M.: Deterministic global optimization with a neighbourhood determination algorithm based on neural networks. In: Advances in Neural Networks—ISNN 2005, Pt 1, Proceedings, vol. 3496, pp. 700–705 (2005)
Messine F.: Deterministic global optimization using interval constraint propagation techniques. Rairo Oper. Res. 38, 277–293 (2004)
Adjiman C.S., Papamichail I.: A deterministic global optimization algorithm for problems with nonlinear dynamics. Front. Glob. Optim. 74, 1–23 (2004)
Gau C.Y.T., Schrage L.E.: Implementation and testing of a branch-and-bound based method for deterministic global optimization: operations research applications. Front. Glob. Optim. 74, 145–164 (2004)
Lin Y., Stadtherr M.A.: Advances in interval methods for deterministic global optimization in chemical engineering. J. Glob. Optim. 29, 281–296 (2004)
Bartholomew-Biggs M.C., Parkhurst S.C., Wilson S.R.: Global optimization—stochastic or deterministic?. Stoch. Algorithms Found. Appl. 2827, 125–137 (2003)
Sambridge M.: Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble. Geophys. J. Int. 138, 727–746 (1999)
Sambridge M.: Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys. J. Int. 138, 479–494 (1999)
Sambridge M., Braun J., Mcqueen H.: Geophysical parametrization and interpolation of irregular data using natural neighbors. Geophys. J. Int. 122, 837–857 (1995)
Locatelli M., Wood G.R.: Objective function features providing barriers to rapid global optimization. J. Glob. Optim. 31, 549–565 (2005)
Locatelli M.: On the multilevel structure of global optimization problems. Comput. Optim. Appl. 30, 5–22 (2005)
Daubechies I., Mallat S., Willsky A.S.: Special issue on wavelet transforms and multiresolution signal analysis—introduction. IEEE Trans. Inf. Theory 38, 529–531 (1992)
Daubechies I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36, 961–1005 (1990)
Daubechies I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)
Mallat S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)
Meyer, Y.: Principle d’incertitude, basis Hilbertiennes et algebras d’operateurs. In: Bourbaki Seminar (1885–1986)
Daubechies I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)
Daubechies I., Paul T.: Time frequency localization operators—a geometric phase-space approach 2. The use of dilations. Inverse Probl. 4, 661–680 (1988)
Kalantari B., Rosen J.B.: Construction of large-scale global minimum concave quadratic test problems. J. Optim. Theory Appl. 48, 303–313 (1986)
Floudas C., Pardalos P.M.: A collection of test problems for constrained global optimization algorithms. In: Goos GaH, J. Lecture Notes in Computer Science, Springer, Berlin (1990)
Khoury B.N., Pardalos P.M., Du D.Z.: A test problem generator for the Steiner problem in graphs. ACM Trans. Math. Softw. 19, 509–522 (1993)
Schoen F.: A wide class of test functions for global optimization. J. Glob. Optim. 3, 133–137 (1993)
Mathar R., Zilinskas A.: A class of test functions for global optimization. J. Glob. Optim. 5, 195–199 (1994)
Facchinei F., Judice J., Soares J.: Generating box-constrained optimization problems. ACM Trans. Math. Softw. 23, 443–447 (1997)
Gaviano R., Lera D.: Test functions with variable attraction regions for global optimization problems. J. Glob. Optim. 13, 207–223 (1998)
Gaviano M., Kvasov D.E., Lera D., Sergeyev Y.D.: Algorithm 829: software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29, 469–480 (2003)
Mishra, S.: Some new test functions for global optimization and performance of repulsive particle swarm method. In: MPRA (2006)
Addis B., Locatelli M.: A new class of test functions for global optimization. J. Glob. Optim. 38, 479–501 (2007)
Jones D.R., Perttunen C.D., Stuckman B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)
Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numerical global optimization. In: 2005 IEEE Swarm Intelligence Symposium, Pasadena, pp. 68–75. IEEE Press (2005)
Schwefel H.-P.: Numerical Optimization of Computer Models. Wiley, New York (1981)
Ackley D.H.: A Connectionist Machine for Genetic Hillclimbing. Springer, Boston (1987)
Conn A.R., Gould N.I.M., Toint P.L.: Testing a class of methods for solving minimization problems with simple bounds on the variables. Math. Comput. 50, 399–430 (1988)
Branch M.A., Coleman T.F., Li Y.Y.: A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 21, 1–23 (1999)
Dixon L.C.W., Szego G.P.: The optimization problem: an introduction. In: Dixon, L.C.W., Szego, G.P. (eds) Towards Global Optimization II, North Holland, New York (1978)
Goldstei A.A., Price J.F.: Descent from local minima. Math. Comput. 25, 569–574 (1971)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sun, W., Dong, Y. Study of multiscale global optimization based on parameter space partition. J Glob Optim 49, 149–172 (2011). https://doi.org/10.1007/s10898-010-9540-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-010-9540-x