Abstract
Two parallel deterministic direct search algorithms are combined to find improved parameters for a system of differential equations designed to simulate the cell cycle of budding yeast. Comparing the model simulation results to experimental data is difficult because most of the experimental data is qualitative rather than quantitative. An algorithm to convert simulation results to mutant phenotypes is presented. Vectors of the 143 parameters defining the differential equation model are rated by a discontinuous objective function. Parallel results on a 2200 processor supercomputer are presented for a global optimization algorithm, DIRECT, a local optimization algorithm, MADS, and a hybrid of the two.
Similar content being viewed by others
References
Allen N.A., Calzone L., Chen K.C., Ciliberto A., Ramakrishnan N., Shaffer C.A., Sible J.C., Tyson J.J., Vass M.T., Watson L.T. and Zwolak J.W. (2003). Modeling regulatory networks at Virginia Tech. OMICS 7: 285–299
Allen N.A., Chen K.C., Tyson J.J., Shaffer C.A. and Watson L.T. (2006). Computer evaluation of network dynamics models with application to cell cycle control in budding yeast. IEE Syst. Biol. 153: 13–21
Allen N.A., Shaffer C.A., Ramakrishnan N., Vass M.T. and Watson L.T. (2003). Improving the development process for eukaryotic cell cycle models with a modeling support environment. Simulation 79: 674–688
Audet C. and Dennis J.E. Jr. (2006). Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17: 188–217
Chen K.C., Calzone L., Csikasz-Nagy A., Cross F.R., Novak B. and Tyson J.J. (2004). Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15: 3841–3862
Coope I.D. and Price C.J. (2000). Frame based methods for unconstrained optimization. J. Optim. Theory Appl 107: 261–274
He J., Sosonkina M., Shaffer C.A., Tyson J.J., Watson L.T. and Zwolak J.W. (2004). A hierarchical parallel scheme for a global search algorithm. In: Meyer, J. (eds) Proceedings of High Performance Computing Symposium 2004, pp 43–50. Society for Modeling and Simulation International, San Diego, CA
He, J., Sosonkina, M., Shaffer, C.A., Tyson, J.J., Watson, L.T., Zwolak, J.W.: A hierarchical parallel scheme for global parameter estimation in systems biology. In: Proceedings of the 18th International Parallel & Distributed Processing Symposium, 9 p, CD-ROM, Los Alamitos, CA, IEEE Computer Soc. (2004)
He J., Sosonkina M., Watson L.T., Verstak A. and Zwolak J.W. (2005). Data-distributed parallelism with dynamic task allocation for a global search algorithm. In: Parashar, M. and Watson, L. (eds) Proceedings of High Performance Computing Symposium 2005, pp 164–172. Society for Modeling and Simulation International, San Diego, CA
He J., Watson L.T., Ramakrishnan N., Shaffer C.A., Verstak A., Jiang J., Bae K. and Tranter W.H. (2002). Dynamic data structures for a direct search algorithm. Comput. Optim. Appl. 23: 5–25
Jones D.R., Perttunen C.D. and Stuckman B.E. (1993). Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79: 157–181
Murray A. and Hunt T. (1993). The Cell Cycle: an Introduction. Oxford University Press, New York
Nasmyth K. (1996). At the heart of the budding yeast cell cycle. Trends Genet. 12: 405–412
Nurse P. (2000). A long twentieth century of the cell cycle and beyond. Cell 100: 71–78
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Panning, T.D., Watson, L.T., Allen, N.A. et al. Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle. J Glob Optim 40, 719–738 (2008). https://doi.org/10.1007/s10898-007-9273-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-007-9273-7