[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Two parallel deterministic direct search algorithms are combined to find improved parameters for a system of differential equations designed to simulate the cell cycle of budding yeast. Comparing the model simulation results to experimental data is difficult because most of the experimental data is qualitative rather than quantitative. An algorithm to convert simulation results to mutant phenotypes is presented. Vectors of the 143 parameters defining the differential equation model are rated by a discontinuous objective function. Parallel results on a 2200 processor supercomputer are presented for a global optimization algorithm, DIRECT, a local optimization algorithm, MADS, and a hybrid of the two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen N.A., Calzone L., Chen K.C., Ciliberto A., Ramakrishnan N., Shaffer C.A., Sible J.C., Tyson J.J., Vass M.T., Watson L.T. and Zwolak J.W. (2003). Modeling regulatory networks at Virginia Tech. OMICS 7: 285–299

    Article  Google Scholar 

  2. Allen N.A., Chen K.C., Tyson J.J., Shaffer C.A. and Watson L.T. (2006). Computer evaluation of network dynamics models with application to cell cycle control in budding yeast. IEE Syst. Biol. 153: 13–21

    Article  Google Scholar 

  3. Allen N.A., Shaffer C.A., Ramakrishnan N., Vass M.T. and Watson L.T. (2003). Improving the development process for eukaryotic cell cycle models with a modeling support environment. Simulation 79: 674–688

    Article  Google Scholar 

  4. Audet C. and Dennis J.E. Jr. (2006). Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17: 188–217

    Article  Google Scholar 

  5. Chen K.C., Calzone L., Csikasz-Nagy A., Cross F.R., Novak B. and Tyson J.J. (2004). Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15: 3841–3862

    Article  Google Scholar 

  6. Coope I.D. and Price C.J. (2000). Frame based methods for unconstrained optimization. J. Optim. Theory Appl 107: 261–274

    Article  Google Scholar 

  7. He J., Sosonkina M., Shaffer C.A., Tyson J.J., Watson L.T. and Zwolak J.W. (2004). A hierarchical parallel scheme for a global search algorithm. In: Meyer, J. (eds) Proceedings of High Performance Computing Symposium 2004, pp 43–50. Society for Modeling and Simulation International, San Diego, CA

    Google Scholar 

  8. He, J., Sosonkina, M., Shaffer, C.A., Tyson, J.J., Watson, L.T., Zwolak, J.W.: A hierarchical parallel scheme for global parameter estimation in systems biology. In: Proceedings of the 18th International Parallel & Distributed Processing Symposium, 9 p, CD-ROM, Los Alamitos, CA, IEEE Computer Soc. (2004)

  9. He J., Sosonkina M., Watson L.T., Verstak A. and Zwolak J.W. (2005). Data-distributed parallelism with dynamic task allocation for a global search algorithm. In: Parashar, M. and Watson, L. (eds) Proceedings of High Performance Computing Symposium 2005, pp 164–172. Society for Modeling and Simulation International, San Diego, CA

    Google Scholar 

  10. He J., Watson L.T., Ramakrishnan N., Shaffer C.A., Verstak A., Jiang J., Bae K. and Tranter W.H. (2002). Dynamic data structures for a direct search algorithm. Comput. Optim. Appl. 23: 5–25

    Article  Google Scholar 

  11. Jones D.R., Perttunen C.D. and Stuckman B.E. (1993). Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79: 157–181

    Article  Google Scholar 

  12. Murray A. and Hunt T. (1993). The Cell Cycle: an Introduction. Oxford University Press, New York

    Google Scholar 

  13. Nasmyth K. (1996). At the heart of the budding yeast cell cycle. Trends Genet. 12: 405–412

    Article  Google Scholar 

  14. Nurse P. (2000). A long twentieth century of the cell cycle and beyond. Cell 100: 71–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layne T. Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panning, T.D., Watson, L.T., Allen, N.A. et al. Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle. J Glob Optim 40, 719–738 (2008). https://doi.org/10.1007/s10898-007-9273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9273-7

Keywords

Navigation