Abstract
Suppose \(\mathfrak {X} = \{X_1, X_2, \ldots,\,X_m\}\) is a system of real smooth vector fields on an open neighbourhood Ω of the closure of a bounded connected open set M in \(\mathbb {R}^N\) satisfying the finite rank condition of Hörmander, namely the rank of the Lie algebra generated by \(\mathfrak {X}\) under the usual bracket operation is a constant equal to N. We study the smoothness of solutions of a class of quasilinear equations of the form
where \(a_j,\,b \in C^{\infty}(\Omega \times \mathbb {R} \times \mathbb {R}^m; \mathbb {R})\). It is shown that if the matrix \(\left({\frac {\partial a_j}{\partial \xi_i}}\right)\) is positive definite on \(M \times \mathbb {R}^{m+1}\) then any weak solution \(u \in \mathcal {C}^{2,\alpha}(M, \mathfrak {X})\) belongs to C ∞(M).
Similar content being viewed by others
References
Bony J.-M. (1969). Principe de maximum, inégalité de Harnack pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier 19: 277–304
Dirridj M. (1971). Un problème aux limites pour une classe d’opèrateurs du second ordre hypoelliptiques. Ann. Inst. Fourier. 21: 99–148
Hörmander L. (1967). Hypoelliptic second order differential equations. Acta Mathematica 119: 147–171
Murthy M.K.V. and Stampacchia G. (1968). Boundary value problems for some degenerate - elliptic operators. Annali di Mat. Pura ed Appl. 80: 1–122
Nagel A., Stein E.M. and Wainger S. (1985). Balls and metrics defined by vector fields I, basic properties. Acta Math. 155: 103–147
Rothschield L. and Stein E.E. (1977). Hypoelliptic differential operators and nilpotent Lie groups. Acta Math. 137: 247–320
Sanchez-Calle A. (1984). Fundamental solutions and geometry of the sum of squares of vector fields. Invent. Math. 78: 143–160
Stampacchia G. (1965). Le problème de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinues. Ann. Inst. Fourier 15: 189–258
Xu C.J. (1990). Subelliptic variational problems. Bull.Soc. Math. France 118: 147–169
Xu C.J. (1992). Regularity for quasilinear second order subelliptic equations. Comm. Pure Appl. Math. XLV: 77–96
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to the memory of Sergio Companato.
Rights and permissions
About this article
Cite this article
Murthy, M.K.V. A class of subelliptic quasilinear equations. J Glob Optim 40, 245–260 (2008). https://doi.org/10.1007/s10898-007-9214-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-007-9214-5