[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A class of subelliptic quasilinear equations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Suppose \(\mathfrak {X} = \{X_1, X_2, \ldots,\,X_m\}\) is a system of real smooth vector fields on an open neighbourhood Ω of the closure of a bounded connected open set M in \(\mathbb {R}^N\) satisfying the finite rank condition of Hörmander, namely the rank of the Lie algebra generated by \(\mathfrak {X}\) under the usual bracket operation is a constant equal to N. We study the smoothness of solutions of a class of quasilinear equations of the form

$$Q_{\mathfrak {X}}u = \sum _{j=1}^m X_j^*a_j(x, u, Xu) +b (x, u, Xu) = 0$$

where \(a_j,\,b \in C^{\infty}(\Omega \times \mathbb {R} \times \mathbb {R}^m; \mathbb {R})\). It is shown that if the matrix \(\left({\frac {\partial a_j}{\partial \xi_i}}\right)\) is positive definite on \(M \times \mathbb {R}^{m+1}\) then any weak solution \(u \in \mathcal {C}^{2,\alpha}(M, \mathfrak {X})\) belongs to C (M).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bony J.-M. (1969). Principe de maximum, inégalité de Harnack pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier 19: 277–304

    Google Scholar 

  2. Dirridj M. (1971). Un problème aux limites pour une classe d’opèrateurs du second ordre hypoelliptiques. Ann. Inst. Fourier. 21: 99–148

    Google Scholar 

  3. Hörmander L. (1967). Hypoelliptic second order differential equations. Acta Mathematica 119: 147–171

    Article  Google Scholar 

  4. Murthy M.K.V. and Stampacchia G. (1968). Boundary value problems for some degenerate - elliptic operators. Annali di Mat. Pura ed Appl. 80: 1–122

    Article  Google Scholar 

  5. Nagel A., Stein E.M. and Wainger S. (1985). Balls and metrics defined by vector fields I, basic properties. Acta Math. 155: 103–147

    Article  Google Scholar 

  6. Rothschield L. and Stein E.E. (1977). Hypoelliptic differential operators and nilpotent Lie groups. Acta Math. 137: 247–320

    Article  Google Scholar 

  7. Sanchez-Calle A. (1984). Fundamental solutions and geometry of the sum of squares of vector fields. Invent. Math. 78: 143–160

    Article  Google Scholar 

  8. Stampacchia G. (1965). Le problème de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinues. Ann. Inst. Fourier 15: 189–258

    Google Scholar 

  9. Xu C.J. (1990). Subelliptic variational problems. Bull.Soc. Math. France 118: 147–169

    Google Scholar 

  10. Xu C.J. (1992). Regularity for quasilinear second order subelliptic equations. Comm. Pure Appl. Math. XLV: 77–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Venkatesha Murthy.

Additional information

Dedicated to the memory of Sergio Companato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murthy, M.K.V. A class of subelliptic quasilinear equations. J Glob Optim 40, 245–260 (2008). https://doi.org/10.1007/s10898-007-9214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9214-5

Keywords

Mathematics Subject Classification (2000)

Navigation