Abstract
This paper addresses the design of a network of observation locations in a spatial domain that will be used to estimate unknown parameters of a distributed parameter system. We consider a setting where we are given a finite number of possible sites at which to locate a sensor, but cost constraints allow only some proper subset of them to be selected. We formulate this problem as the selection of the gauged sites so as to maximize the log-determinant of the Fisher information matrix associated with the estimated parameters. The search for the optimal solution is performed using the branch-and-bound method in which an extremely simple and efficient technique is employed to produce an upper bound to the maximum objective function. Its idea consists in solving a relaxed problem through the application of a simplicial decomposition algorithm in which the restricted master problem is solved using a multiplicative algorithm for optimal design. The use of the proposed approach is illustrated by a numerical example involving sensor selection for a two-dimensional convective diffusion process.
Similar content being viewed by others
References
Amouroux, M. and Babary, J.P.: 1988, Sensor and control location problems, in M. G. Singh (ed.), Systems & Control Encyclopedia. Theory, Technology, Applications, Vol. 6, Pergamon Press, Oxford, pp. 4238–4245.
Armstrong M.(1998). Basic Linear Geostatistics. Springer-Verlag, Berlin
Atkinson A.C., Donev A.N. (1992). Optimum Experimental Designs. Clarendon Press, Oxford
Banks, H. T. and Kunisch, K.: 1989, Estimation Techniques for Distributed Parameter Systems, Systems & Control: Foundations & Applications, Birkhäuser, Boston.
Banks, H. T., Smith, R. C. and Wang, Y.: 1996, Smart Material Structures: Modeling, Estimation and Control, Research in Applied Mathematics, Masson, Paris.
Bertsekas, D. P.: 1999, Nonlinear Programming, Optimization and Computation Series, 2nd edn, Athena Scientific, Belmont, MA.
Boer, E. P. J., Hendrix, E. M. T. and Rasch, D. A. M. K.: 2001, Optimization of monitoring networks for estimation of the semivariance function, in A. C. Atkinson, P. Hackl and W. Müller (eds), mODa 6, Proc. 6th Int. Workshop on Model-Oriented Data Analysis, Puchberg/Schneeberg, Austria, 2001, Physica-Verlag, Heidelberg, pp. 21–28.
Boyd S., Vandenberghe L. (2004). Convex Optimization. Cambridge University Press, Cambridge
Caselton, W. F., Kan, L. and Zidek, J. V.: 1992, Quality data networks that minimize entropy, in A. Walden and P. Guttorp (eds), Statistics in the Environmental and Earth Sciences, Halsted Press, New York, chapter 2, pp. 10–38.
Caselton W.F., Zidek J.V. (1984): Optimal monitoring network design. Statistics & Probability Letters 2, 223–227
Cassandras C.G., Li W. (2005): Sensor networks and cooperative control. European Journal of Control 11(4–5): 436–463
Chong C.-Y., Kumar S. P. (2003), Sensor networks: Evolution, opportunities, and challenges. Proceedings of the IEEE 91(8): 1247–1256
Christofides, P. D.: 2001, Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes, Systems & Control: Foundations & Applications, Birkhäuser, Boston.
COMSOL AB: 1995, Partial Differential Equation Toolbox for Use with Matlab. User’s Guide, The MathWorks, Inc., Natick, MA.
Cressie N.A.C. (1993). Statistics for Spatial Data, revised edn. John Wiley & Sons, New York
Daescu D.N., Navon I.M. (2004): Adaptive observations in the context of 4D-Var data assimilation. Meteorology and Atmospheric Physics 85, 205–226
Fedorov V.V. (1989). Optimal design with bounded density: Optimization algorithms of the exchange type. Journal of Statistical Planning and Inference 22, 1–13
Fedorov, V. V. and Hackl, P.: 1997, Model-Oriented Design of Experiments, Lecture Notes in Statistics, Springer-Verlag, New York.
Floudas, C. A.: 2001, Mixed integer nonlinear programming, MINLP, in C. A. Floudas and P. M. Pardalos (eds), Encyclopedia of Optimization, Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 401–414.
Gerdts M. (2005) Solving mixed-integer optimal control problems by branch&bound: A case study from automobile test-driving with gear shift. Journal of Optimization Theory and Applications 26: 1–18
Gevers M. (2005): Identification for control: From the early achievements to the revival of experiment design. European Journal of Control 11(4–5): 335–352
Goodwin G.C., Payne R.L. (1977) Dynamic System Identification. Experiment Design and Data Analysis. Mathematics in Science and Engineering, Academic Press, New York
Hearn D.W., Lawphongpanich S., Ventura J.A. (1985), Finiteness in restricted simplicial decomposition. Operations Research Letters 4(3): 125–130
Hearn D.W., Lawphongpanich S., Ventura J.A. (1987): Restricted simplicial decomposition: Computation and extensions. Mathematical Programming Study 31, 99–118
Hjalmarsson H. (2005): From experiment design to closed-loop control. Automatica 41, 393–438
Horn R.A., Johnson C.R. (1986) Matrix Analysis. Cambridge University Press, Cambridge, UK
Jeremić A., Nehorai A. (1998): Design of chemical sensor arrays for monitoring disposal sites on the ocean floor. IEEE Transactions on Oceanic Engineering 23(4): 334–343
Jeremić A., Nehorai A. (2000) Landmine detection and localization using chemical sensor array processing. IEEE Transactions on Signal Processing 48(5): 1295–1305
Kammer, D. C.: 1990, Sensor placement for on-orbit modal identification and correlation of large space structures, Proc. American Control Conf., San Diego, California, 23–25 May 1990, Vol. 3, pp. 2984–2990.
Kammer D.C. (1992) Effects of noise on sensor placement for on-orbit modal identification of large space structures. Transactions of the ASME 114: 436–443
Kincaid R.K., Padula S.L. (2002) D-optimal designs for sensor and actuator locations. Computers & Operations Research 29: 701–713
Kubrusly C.S., Malebranche H. (1985), Sensors and controllers location in distributed systems—A survey. Automatica 21(2): 117–128
Lam R.L.H., Welch W.J., Young S.S. (2002) Uniform coverage designs for molecule selection. Technometrics 44(2): 99–109
Lange K. (1999). Numerical Analysis for Statisticians. Springer-Verlag, New York
Liu C.Q., Ding Y., Chen Y. (2005): Optimal coordinate sensor placements for estimating mean and variance components of variation sources. IEE Transactions 37, 877–889
Ljung, L.: 1999, System Identification: Theory for the User, 2nd edn, Prentice Hall, Upper Saddle River, NJ.
Martínez S., Bullo F. (2006) Optimal sensor placement and motion coordination for target tracking. Automatica 42: 661–668
MathWorks: 2000, Optimization Toolbox for Use with Matlab. User’s Guide, Version 2, The MathWorks, Inc., Natick, MA.
Meyer R.K., Nachtsheim C.J. (1995): The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics 37(1): 60–69
Müller, W. G.: 2001, Collecting Spatial Data. Optimum Design of Experiments for Random Fields, Contributions to Statistics, 2nd revised edn, Physica-Verlag, Heidelberg.
Munack, A.: 1984, Optimal sensor allocation for identification of unknown parameters in a bubble-column loop bioreactor, in A. V. Balakrishnan and M. Thoma (eds), Analysis and Optimization of Systems, Part 2, Lecture Notes in Control and Information Sciences, volume 63, Springer-Verlag, Berlin, pp. 415–433.
Navon I.M. (1997) Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography. Dynamics of Atmospheres and Oceans 27: 55–79
Nehorai A., Porat B., Paldi E. (1995) Detection and localization of vapor-emitting sources. IEEE Transactions on Signal Processing 43(1): 243–253
Nocedal J., Wright S.J. (1999): Numerical Opimization. Springer-Verlag, New York
Nychka, D., Piegorsch, W. W. and Cox, L. H. (eds): 1998, Case Studies in Environmental Statistics, Lecture Notes in Statistics, volume 132, Springer-Verlag, New York.
Nychka, D. and Saltzman, N.: 1998, Design of air-quality monitoring networks, in D. Nychka, W. W. Piegorsch and L. H. Cox (eds), Case Studies in Environmental Statistics, Lecture Notes in Statistics, volume 132, Springer-Verlag, New York, pp. 51–76.
Ögren P., Fiorelli E., Leonard N.E. (2004): Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic Control 49(8): 1292–1302
Omatu, S. and Seinfeld, J. H.: 1989, Distributed Parameter Systems: Theory and Applications, Oxford Mathematical Monographs, Oxford University Press, New York.
Patan M., Patan K. (2005): Optimal observation strategies for model-based fault detection in distributed systems. International Journal of Control 78(18): 1497–1510
Patriksson, M.: 2001, Simplicial decomposition algorithms, in C. A. Floudas and P. M. Pardalos (eds), Encyclopedia of Optimization, Vol. 5, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 205–212.
Pázman, A.: 1986, Foundations of Optimum Experimental Design,Mathematics and Its Applications, D. Reidel Publishing Company, Dordrecht, The Netherlands.
Pierre, D. A.: 1969, Optimization Theory with Applications, Series in Decision and Control, John Wiley & Sons, New York.
Point N., Vande Wouwer A., Remy M. (1996) Practical issues in distributed parameter estimation: Gradient computation and optimal experiment design. Control Engineering Practice 4(11): 1553–1562
Porat B., Nehorai A. (1996) Localizing vapor-emitting sources by moving sensors. IEEE Transactions on Signal Processing 44(4): 1018–1021
Pronzato L. (2003) Removing non-optimal support points in D-optimum design algorithms. Statistics & Probability Letters 63: 223–228
Pronzato L. (2004) A minimax equivalence theorem for optimum bounded design measures. Statistics & Probability Letters 68: 325–331
Pukelsheim, F.: 1993, Optimal Design of Experiments, Probability and Mathematical Statistics, John Wiley & Sons, New York.
Quereshi Z.H., Ng T.S., Goodwin G.C., (1980) Optimum experimental design for identification of distributed parameter systems. International Journal of Control 31(1): 21–29
Rafajłowicz E. (1981) Design of experiments for eigenvalue identification in distributed-parameter systems. International Journal of Control 34(6): 1079–1094
Rafajłowicz E. (1983) Optimal experiment design for identification of linear distributed-parameter systems: Frequency domain approach. IEEE Transactions on Automatic Control 28(7): 806–808
Rafajłowicz E. (1986) Optimum choice of moving sensor trajectories for distributed parameter system identification. International Journal of Control 43(5): 1441–1451
Reinefeld, A.: 2001, Heuristic search, in C. A. Floudas and P. M. Pardalos (eds), Encyclopedia of Optimization, Vol. 2, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 409–411.
Russell, S. J. and Norvig, P.: 2003, Artificial Intelligence: A Modern Approach, 2nd edn, Pearson Education International, Upper Saddle River, NJ.
Silvey S.D., Titterington D.M., Torsney B. (1978) An algorithm for optimal designs on a finite design space. Communications in Statistics—Theory and Methods 14: 1379–1389
Sinopoli, B., Sharp, C., Schenato, L., Schaffert, S. and Sastry, S. S.: 2003, Distributed control applications within sensor networks, Proceedings of the IEEE 91(8), 1235–1246.
Sun, N.-Z.: 1994, Inverse Problems in Groundwater Modeling, Theory and Applications of Transport in Porous Media, Kluwer Academic Publishers, Dordrecht, The Netherlands.
Titterington D.M. (1980) Aspects of optimal design in dynamic systems. Technometrics 22(3): 287–299
Torsney, B.: 1988, Computing optimising distributions with applications in design, estimation and image processing, in Y. Dodge, V. V. Fedorov and H. P. Wynn (eds), Optimal Design and Analysis of Experiments, Elsevier, Amsterdam, pp. 316–370.
Torsney, B. and Mandal, S.: 2001, Construction of constrained optimal designs, in A. Atkinson, B. Bogacka and A. Zhigljavsky (eds), Optimum Design 2000, Kluwer Academic Publishers, Dordrecht, The Netherlands, chapter 14, pp. 141–152.
Torsney, B. and Mandal, S.: 2004, Multiplicative algorithms for constructing optimizing distributions: Further developments, in A. Di Bucchianico, H. Läuter and H. P. Wynn (eds), mODa 7, Proc. 7th Int. Workshop on Model-Oriented Data Analysis, Heeze, The Netherlands, 2004, Physica-Verlag, Heidelberg, pp. 163–171.
Uciński, D.: 1999, Measurement Optimization for Parameter Estimation in Distributed Systems, Technical University Press, Zielona Góra. Available in electronic form at +http://www.issi.uz.zgora.pl/~ucinski/+.
Uciński D. (2000) Optimal sensor location for parameter estimation of distributed processes. International Journal of Control 73(13): 1235–1248
Uciński, D.: 2005, Optimal Measurement Methods for Distributed-Parameter System Identification, CRC Press, Boca Raton, FL.
Uciński, D.: 2006, Construction of constrained D-optimum designs using simplicial decomposition, Computational Statistics & Data Analysis .(submitted)
Uciński, D. and Atkinson, A. C.: 2004, Experimental design for time-dependent models with correlated observations, Studies in Nonlinear Dynamics & Econometrics 8(2). Article No. 13.
Uciński D., Bogacka B. (2005) T-optimum designs for discrimination between two multivariate dynamic models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67: 3–18
Uciński, D. and Chen, Y.: 2005, Time-optimal path planning of moving sensors for parameter estimation of distributed systems, Proc. 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain. Published on CD-ROM.
Uciński D., Korbicz J. (2001): Optimal sensor allocation for parameter estimation in distributed systems. Journal of Inverse and Ill-used Problems 9(3): 301–317
Uciński, D. and Patan, M.: 2002, Optimal location of discrete scanning sensors for parameter estimation of distributed systems, Proc. 15th IFAC World Congress, Barcelona, Spain, 22–26 July 2002. Published on CD-ROM.
Uspenskii, A. B. and Fedorov, V. V.: 1975, Computational Aspects of the Least-Squares Method in the Analysis and Design of Regression Experiments, Moscow University Press, Moscow.(In Russian).
van de Wal M., de Jager B. (2001) A review of methods for input/output selection. Automatica 37: 487–510
Vande Wouwer, A., Point, N., Porteman, S. and Remy, M.: 1999, On a practical criterion for optimal sensor configuration—Application to a fixed-bed reactor, Proc. 14th IFAC World Congress, Beijing, China, 5–9 July, 1999, Vol. I: Modeling, Identification, Signal Processing II, Adaptive Control, pp. 37–42.
Vandenberghe L., Boyd S. (1999) Applications of semidefinite programming. Applied Numerical Mathematics 29: 283–299
Vandenberghe L., Boyd S., Wu S.-P. (1998): Determinant maximization with linear matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications 19(2): 499–533
Ventura J.A., Hearn D.W. (1993): Restricted simplicial decomposition for convex constrained problems. Mathematical Programming 59, 71–85
Vogel, C. R.: 2002, Computational Methods for Inverse Problems, Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia.
von Hohenbalken B. (1977): Simplicial decomposition in nonlinear programming algorithms. Mathematical Programming 13, 49–68
Walter, É. and Pronzato, L.: 1997, Identification of Parametric Models from Experimental Data, Communications and Control Engineering, Springer-Verlag, Berlin.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Uciński, D., Patan, M. D-optimal design of a monitoring network for parameter estimation of distributed systems. J Glob Optim 39, 291–322 (2007). https://doi.org/10.1007/s10898-007-9139-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-007-9139-z