[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

D-optimal design of a monitoring network for parameter estimation of distributed systems

  • Original Article
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper addresses the design of a network of observation locations in a spatial domain that will be used to estimate unknown parameters of a distributed parameter system. We consider a setting where we are given a finite number of possible sites at which to locate a sensor, but cost constraints allow only some proper subset of them to be selected. We formulate this problem as the selection of the gauged sites so as to maximize the log-determinant of the Fisher information matrix associated with the estimated parameters. The search for the optimal solution is performed using the branch-and-bound method in which an extremely simple and efficient technique is employed to produce an upper bound to the maximum objective function. Its idea consists in solving a relaxed problem through the application of a simplicial decomposition algorithm in which the restricted master problem is solved using a multiplicative algorithm for optimal design. The use of the proposed approach is illustrated by a numerical example involving sensor selection for a two-dimensional convective diffusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amouroux, M. and Babary, J.P.: 1988, Sensor and control location problems, in M. G. Singh (ed.), Systems & Control Encyclopedia. Theory, Technology, Applications, Vol. 6, Pergamon Press, Oxford, pp. 4238–4245.

  • Armstrong M.(1998). Basic Linear Geostatistics. Springer-Verlag, Berlin

    Google Scholar 

  • Atkinson A.C., Donev A.N. (1992). Optimum Experimental Designs. Clarendon Press, Oxford

    Google Scholar 

  • Banks, H. T. and Kunisch, K.: 1989, Estimation Techniques for Distributed Parameter Systems, Systems & Control: Foundations & Applications, Birkhäuser, Boston.

  • Banks, H. T., Smith, R. C. and Wang, Y.: 1996, Smart Material Structures: Modeling, Estimation and Control, Research in Applied Mathematics, Masson, Paris.

  • Bertsekas, D. P.: 1999, Nonlinear Programming, Optimization and Computation Series, 2nd edn, Athena Scientific, Belmont, MA.

  • Boer, E. P. J., Hendrix, E. M. T. and Rasch, D. A. M. K.: 2001, Optimization of monitoring networks for estimation of the semivariance function, in A. C. Atkinson, P. Hackl and W. Müller (eds), mODa 6, Proc. 6th Int. Workshop on Model-Oriented Data Analysis, Puchberg/Schneeberg, Austria, 2001, Physica-Verlag, Heidelberg, pp. 21–28.

  • Boyd S., Vandenberghe L. (2004). Convex Optimization. Cambridge University Press, Cambridge

    Google Scholar 

  • Caselton, W. F., Kan, L. and Zidek, J. V.: 1992, Quality data networks that minimize entropy, in A. Walden and P. Guttorp (eds), Statistics in the Environmental and Earth Sciences, Halsted Press, New York, chapter 2, pp. 10–38.

  • Caselton W.F., Zidek J.V. (1984): Optimal monitoring network design. Statistics & Probability Letters 2, 223–227

    Article  Google Scholar 

  • Cassandras C.G., Li W. (2005): Sensor networks and cooperative control. European Journal of Control 11(4–5): 436–463

    Article  Google Scholar 

  • Chong C.-Y., Kumar S. P. (2003), Sensor networks: Evolution, opportunities, and challenges. Proceedings of the IEEE 91(8): 1247–1256

    Article  Google Scholar 

  • Christofides, P. D.: 2001, Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes, Systems & Control: Foundations & Applications, Birkhäuser, Boston.

  • COMSOL AB: 1995, Partial Differential Equation Toolbox for Use with Matlab. User’s Guide, The MathWorks, Inc., Natick, MA.

  • Cressie N.A.C. (1993). Statistics for Spatial Data, revised edn. John Wiley & Sons, New York

    Google Scholar 

  • Daescu D.N., Navon I.M. (2004): Adaptive observations in the context of 4D-Var data assimilation. Meteorology and Atmospheric Physics 85, 205–226

    Article  Google Scholar 

  • Fedorov V.V. (1989). Optimal design with bounded density: Optimization algorithms of the exchange type. Journal of Statistical Planning and Inference 22, 1–13

    Article  Google Scholar 

  • Fedorov, V. V. and Hackl, P.: 1997, Model-Oriented Design of Experiments, Lecture Notes in Statistics, Springer-Verlag, New York.

  • Floudas, C. A.: 2001, Mixed integer nonlinear programming, MINLP, in C. A. Floudas and P. M. Pardalos (eds), Encyclopedia of Optimization, Vol. 3, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 401–414.

  • Gerdts M. (2005) Solving mixed-integer optimal control problems by branch&bound: A case study from automobile test-driving with gear shift. Journal of Optimization Theory and Applications 26: 1–18

    Google Scholar 

  • Gevers M. (2005): Identification for control: From the early achievements to the revival of experiment design. European Journal of Control 11(4–5): 335–352

    Article  Google Scholar 

  • Goodwin G.C., Payne R.L. (1977) Dynamic System Identification. Experiment Design and Data Analysis. Mathematics in Science and Engineering, Academic Press, New York

    Google Scholar 

  • Hearn D.W., Lawphongpanich S., Ventura J.A. (1985), Finiteness in restricted simplicial decomposition. Operations Research Letters 4(3): 125–130

    Article  Google Scholar 

  • Hearn D.W., Lawphongpanich S., Ventura J.A. (1987): Restricted simplicial decomposition: Computation and extensions. Mathematical Programming Study 31, 99–118

    Google Scholar 

  • Hjalmarsson H. (2005): From experiment design to closed-loop control. Automatica 41, 393–438

    Article  Google Scholar 

  • Horn R.A., Johnson C.R. (1986) Matrix Analysis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jeremić A., Nehorai A. (1998): Design of chemical sensor arrays for monitoring disposal sites on the ocean floor. IEEE Transactions on Oceanic Engineering 23(4): 334–343

    Article  Google Scholar 

  • Jeremić A., Nehorai A. (2000) Landmine detection and localization using chemical sensor array processing. IEEE Transactions on Signal Processing 48(5): 1295–1305

    Article  Google Scholar 

  • Kammer, D. C.: 1990, Sensor placement for on-orbit modal identification and correlation of large space structures, Proc. American Control Conf., San Diego, California, 23–25 May 1990, Vol. 3, pp. 2984–2990.

  • Kammer D.C. (1992) Effects of noise on sensor placement for on-orbit modal identification of large space structures. Transactions of the ASME 114: 436–443

    Google Scholar 

  • Kincaid R.K., Padula S.L. (2002) D-optimal designs for sensor and actuator locations. Computers & Operations Research 29: 701–713

    Article  Google Scholar 

  • Kubrusly C.S., Malebranche H. (1985), Sensors and controllers location in distributed systems—A survey. Automatica 21(2): 117–128

    Article  Google Scholar 

  • Lam R.L.H., Welch W.J., Young S.S. (2002) Uniform coverage designs for molecule selection. Technometrics 44(2): 99–109

    Article  Google Scholar 

  • Lange K. (1999). Numerical Analysis for Statisticians. Springer-Verlag, New York

    Google Scholar 

  • Liu C.Q., Ding Y., Chen Y. (2005): Optimal coordinate sensor placements for estimating mean and variance components of variation sources. IEE Transactions 37, 877–889

    Article  Google Scholar 

  • Ljung, L.: 1999, System Identification: Theory for the User, 2nd edn, Prentice Hall, Upper Saddle River, NJ.

  • Martínez S., Bullo F. (2006) Optimal sensor placement and motion coordination for target tracking. Automatica 42: 661–668

    Article  Google Scholar 

  • MathWorks: 2000, Optimization Toolbox for Use with Matlab. User’s Guide, Version 2, The MathWorks, Inc., Natick, MA.

  • Meyer R.K., Nachtsheim C.J. (1995): The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics 37(1): 60–69

    Article  Google Scholar 

  • Müller, W. G.: 2001, Collecting Spatial Data. Optimum Design of Experiments for Random Fields, Contributions to Statistics, 2nd revised edn, Physica-Verlag, Heidelberg.

  • Munack, A.: 1984, Optimal sensor allocation for identification of unknown parameters in a bubble-column loop bioreactor, in A. V. Balakrishnan and M. Thoma (eds), Analysis and Optimization of Systems, Part 2, Lecture Notes in Control and Information Sciences, volume 63, Springer-Verlag, Berlin, pp. 415–433.

  • Navon I.M. (1997) Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography. Dynamics of Atmospheres and Oceans 27: 55–79

    Article  Google Scholar 

  • Nehorai A., Porat B., Paldi E. (1995) Detection and localization of vapor-emitting sources. IEEE Transactions on Signal Processing 43(1): 243–253

    Article  Google Scholar 

  • Nocedal J., Wright S.J. (1999): Numerical Opimization. Springer-Verlag, New York

    Google Scholar 

  • Nychka, D., Piegorsch, W. W. and Cox, L. H. (eds): 1998, Case Studies in Environmental Statistics, Lecture Notes in Statistics, volume 132, Springer-Verlag, New York.

  • Nychka, D. and Saltzman, N.: 1998, Design of air-quality monitoring networks, in D. Nychka, W. W. Piegorsch and L. H. Cox (eds), Case Studies in Environmental Statistics, Lecture Notes in Statistics, volume 132, Springer-Verlag, New York, pp. 51–76.

  • Ögren P., Fiorelli E., Leonard N.E. (2004): Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Transactions on Automatic Control 49(8): 1292–1302

    Article  Google Scholar 

  • Omatu, S. and Seinfeld, J. H.: 1989, Distributed Parameter Systems: Theory and Applications, Oxford Mathematical Monographs, Oxford University Press, New York.

  • Patan M., Patan K. (2005): Optimal observation strategies for model-based fault detection in distributed systems. International Journal of Control 78(18): 1497–1510

    Article  Google Scholar 

  • Patriksson, M.: 2001, Simplicial decomposition algorithms, in C. A. Floudas and P. M. Pardalos (eds), Encyclopedia of Optimization, Vol. 5, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 205–212.

  • Pázman, A.: 1986, Foundations of Optimum Experimental Design,Mathematics and Its Applications, D. Reidel Publishing Company, Dordrecht, The Netherlands.

  • Pierre, D. A.: 1969, Optimization Theory with Applications, Series in Decision and Control, John Wiley & Sons, New York.

  • Point N., Vande Wouwer A., Remy M. (1996) Practical issues in distributed parameter estimation: Gradient computation and optimal experiment design. Control Engineering Practice 4(11): 1553–1562

    Article  Google Scholar 

  • Porat B., Nehorai A. (1996) Localizing vapor-emitting sources by moving sensors. IEEE Transactions on Signal Processing 44(4): 1018–1021

    Article  Google Scholar 

  • Pronzato L. (2003) Removing non-optimal support points in D-optimum design algorithms. Statistics & Probability Letters 63: 223–228

    Article  Google Scholar 

  • Pronzato L. (2004) A minimax equivalence theorem for optimum bounded design measures. Statistics & Probability Letters 68: 325–331

    Article  Google Scholar 

  • Pukelsheim, F.: 1993, Optimal Design of Experiments, Probability and Mathematical Statistics, John Wiley & Sons, New York.

  • Quereshi Z.H., Ng T.S., Goodwin G.C., (1980) Optimum experimental design for identification of distributed parameter systems. International Journal of Control 31(1): 21–29

    Article  Google Scholar 

  • Rafajłowicz E. (1981) Design of experiments for eigenvalue identification in distributed-parameter systems. International Journal of Control 34(6): 1079–1094

    Article  Google Scholar 

  • Rafajłowicz E. (1983) Optimal experiment design for identification of linear distributed-parameter systems: Frequency domain approach. IEEE Transactions on Automatic Control 28(7): 806–808

    Article  Google Scholar 

  • Rafajłowicz E. (1986) Optimum choice of moving sensor trajectories for distributed parameter system identification. International Journal of Control 43(5): 1441–1451

    Article  Google Scholar 

  • Reinefeld, A.: 2001, Heuristic search, in C. A. Floudas and P. M. Pardalos (eds), Encyclopedia of Optimization, Vol. 2, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 409–411.

  • Russell, S. J. and Norvig, P.: 2003, Artificial Intelligence: A Modern Approach, 2nd edn, Pearson Education International, Upper Saddle River, NJ.

  • Silvey S.D., Titterington D.M., Torsney B. (1978) An algorithm for optimal designs on a finite design space. Communications in Statistics—Theory and Methods 14: 1379–1389

    Article  Google Scholar 

  • Sinopoli, B., Sharp, C., Schenato, L., Schaffert, S. and Sastry, S. S.: 2003, Distributed control applications within sensor networks, Proceedings of the IEEE 91(8), 1235–1246.

  • Sun, N.-Z.: 1994, Inverse Problems in Groundwater Modeling, Theory and Applications of Transport in Porous Media, Kluwer Academic Publishers, Dordrecht, The Netherlands.

  • Titterington D.M. (1980) Aspects of optimal design in dynamic systems. Technometrics 22(3): 287–299

    Article  Google Scholar 

  • Torsney, B.: 1988, Computing optimising distributions with applications in design, estimation and image processing, in Y. Dodge, V. V. Fedorov and H. P. Wynn (eds), Optimal Design and Analysis of Experiments, Elsevier, Amsterdam, pp. 316–370.

  • Torsney, B. and Mandal, S.: 2001, Construction of constrained optimal designs, in A. Atkinson, B. Bogacka and A. Zhigljavsky (eds), Optimum Design 2000, Kluwer Academic Publishers, Dordrecht, The Netherlands, chapter 14, pp. 141–152.

  • Torsney, B. and Mandal, S.: 2004, Multiplicative algorithms for constructing optimizing distributions: Further developments, in A. Di Bucchianico, H. Läuter and H. P. Wynn (eds), mODa 7, Proc. 7th Int. Workshop on Model-Oriented Data Analysis, Heeze, The Netherlands, 2004, Physica-Verlag, Heidelberg, pp. 163–171.

  • Uciński, D.: 1999, Measurement Optimization for Parameter Estimation in Distributed Systems, Technical University Press, Zielona Góra. Available in electronic form at +http://www.issi.uz.zgora.pl/~ucinski/+.

  • Uciński D. (2000) Optimal sensor location for parameter estimation of distributed processes. International Journal of Control 73(13): 1235–1248

    Article  Google Scholar 

  • Uciński, D.: 2005, Optimal Measurement Methods for Distributed-Parameter System Identification, CRC Press, Boca Raton, FL.

  • Uciński, D.: 2006, Construction of constrained D-optimum designs using simplicial decomposition, Computational Statistics & Data Analysis .(submitted)

  • Uciński, D. and Atkinson, A. C.: 2004, Experimental design for time-dependent models with correlated observations, Studies in Nonlinear Dynamics & Econometrics 8(2). Article No. 13.

  • Uciński D., Bogacka B. (2005) T-optimum designs for discrimination between two multivariate dynamic models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67: 3–18

    Article  Google Scholar 

  • Uciński, D. and Chen, Y.: 2005, Time-optimal path planning of moving sensors for parameter estimation of distributed systems, Proc. 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain. Published on CD-ROM.

  • Uciński D., Korbicz J. (2001): Optimal sensor allocation for parameter estimation in distributed systems. Journal of Inverse and Ill-used Problems 9(3): 301–317

    Google Scholar 

  • Uciński, D. and Patan, M.: 2002, Optimal location of discrete scanning sensors for parameter estimation of distributed systems, Proc. 15th IFAC World Congress, Barcelona, Spain, 22–26 July 2002. Published on CD-ROM.

  • Uspenskii, A. B. and Fedorov, V. V.: 1975, Computational Aspects of the Least-Squares Method in the Analysis and Design of Regression Experiments, Moscow University Press, Moscow.(In Russian).

  • van de Wal M., de Jager B. (2001) A review of methods for input/output selection. Automatica 37: 487–510

    Article  Google Scholar 

  • Vande Wouwer, A., Point, N., Porteman, S. and Remy, M.: 1999, On a practical criterion for optimal sensor configuration—Application to a fixed-bed reactor, Proc. 14th IFAC World Congress, Beijing, China, 5–9 July, 1999, Vol. I: Modeling, Identification, Signal Processing II, Adaptive Control, pp. 37–42.

  • Vandenberghe L., Boyd S. (1999) Applications of semidefinite programming. Applied Numerical Mathematics 29: 283–299

    Article  Google Scholar 

  • Vandenberghe L., Boyd S., Wu S.-P. (1998): Determinant maximization with linear matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications 19(2): 499–533

    Article  Google Scholar 

  • Ventura J.A., Hearn D.W. (1993): Restricted simplicial decomposition for convex constrained problems. Mathematical Programming 59, 71–85

    Article  Google Scholar 

  • Vogel, C. R.: 2002, Computational Methods for Inverse Problems, Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia.

  • von Hohenbalken B. (1977): Simplicial decomposition in nonlinear programming algorithms. Mathematical Programming 13, 49–68

    Article  Google Scholar 

  • Walter, É. and Pronzato, L.: 1997, Identification of Parametric Models from Experimental Data, Communications and Control Engineering, Springer-Verlag, Berlin.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Uciński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uciński, D., Patan, M. D-optimal design of a monitoring network for parameter estimation of distributed systems. J Glob Optim 39, 291–322 (2007). https://doi.org/10.1007/s10898-007-9139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9139-z

Keywords

Navigation