Abstract
In this paper, the notion of gap functions is extended from scalar case to vector one. Then, gap functions and generalized functions for several kinds of vector equilibrium problems are shown. As an application, the dual problem of a class of optimization problems with a system of vector equilibrium constraints (in short, OP) is established, the concavity of the dual function, the weak duality of (OP) and the saddle point sufficient condition are derived by using generalized gap functions.
Similar content being viewed by others
References
Ansari Q.H., Chan W.K. and Yang X.Q. (2004). The system of vector quasi-equilibrium problems with applications. J. Global Optim. 29: 45–57
Ansari Q.H., Schaible S. and Yao J.C. (2002). The system of generalized vector equilibrium problems with applications.. J. Global Optim. 22: 3–16
Ansari Q.H. and Yao J.C. (1999). An existence result for generalized vector equilibrium problem. Appl. Math. Lett. 12: 53–56
Bianchi M., Hadjisavvas N. and Schaible S. (1997). Vector equilibrium problems with generalized monotone bifunctions. J. Optim. Theory Appl. 92(3): 527–542
Blum E. and Oettli W. (1994). From optimization and variational inequalities to equilibrium problems. The Math. Student 63: 123–145
Chadli O., Wong N.C. and Yao J.C. (2003). Equilibrium problems with applications to eigenvalue problems. J. Optim. Theory Appl. 117: 245–266
Chen G.Y., Goh C.J. and Yang X.Q. (2000). On gap functions for vector variational inequalities. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibrium, pp 55–72. Kluwer Academic Publishers, Dordrecht, Boston, London
Chen, G.Y., Huang, X.X., Yang, X.Q.: Vector Optimization: Set-valued and Variational Analysis. Lecture Notes in Economics and Mathematical Systems 541, Springer-Verlag, Berlin, Heidelberg (2005)
Chen G.Y. and Yang X.Q. (2002). Characterizations of variable domination structures via nonlinear scalarization. J. Optim. Theory Appl. 112(1): 97–110
Chen G.Y., Yang X.Q. and Yu H. (2005). A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J. Global Optim. 32(4): 451–466
Ding X.P., Yao J.C. and Lin L.J. (2004). Solutions of system of generalized vector quasi-equilibrium problems in locally G-convex uniform spaces. J. Math. Anal. Appl. 298: 398–410
Fang Y.P. and Huang N.J. (2004). Existence results for systems of strong implicit vector variational inequalities. Acta Math. Hungar. 103: 265–277
Fang Y.P. and Huang N.J. (2004). Vector equilibrium type problems with (S)+-conditions. Optimization 53: 269–279
Flores-Bazán Y.P. (2003). Existence theory for finite-dimensional pseudomonotone equilibrium problems. Acta Appl. Math. 77: 249–297
Gerth C. and Weidner P. (1990). Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67: 297–320
Giannessi F. Theorem of alternative, quadratic programs, and complementarity problems. In: Cottle R.W., Giannessi F., Lions J.L. (ed.) Variational Inequality and Complementarity Problems, pp. 151–186. John Wiley and Sons, Chichester, England
Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibrium. Kluwer Academic Publishers, Dordrecht, Boston, London (2000)
Goh C.J. and Yang X.Q. (2002). Duality in Optimization and Variational Inequalities. Taylor and Francis, London
Göpfert A., Riahi H., Tammer C. and Zălinescu C. (2003). Variational Methods in Partially Ordered Spaces. Springer-Verlag, Berlin
Hadjisavvas N. and Schaible S. (1998). From scalar to vector equilibrium problems in the quasimonotone case. J. Optim. Theory Appl. 96(2): 297–309
Huang N.J. and Gao C.J. (2003). Some generalized vector variational inequalities and complementarity problems for multivalued mappings. Appl. Math. Lett. 16: 1003–1010
Huang N.J., Li J. and Thompson H.B. (2003). Implicit vector equilibrium problems with applications. Math. Comput. Modelling 37: 1343–1356
Huang, N.J., Li, J., Yao, J.C.: Gap functions and existence of solutions for a system of vector equilibrium problems. J. Optim. Theory Appl. (in press)
Horst R., Pardalos P.M. and Thoai N.V. (1995). Introduce to Global Optimization. Kluwer Academic Publishers, Dordrecht, Boston, London
Isac G., Bulavski V.A. and Kalashnikov V.V. (2002). Complementarity, Equilibrium, Efficiency and Economics. Kluwer Academic Publishers, Dordrecht, Boston, London
Li J. and He Z.Q. (2005). Gap functions and existence of solutions to generalized vector variational inequalities. Appl. Math. Lett. 18(9): 989–1000
Li J. and Huang N.J. (2005). Implicit vector equilibrium problems via nonlinear scalarisation. Bulletin of the Australian Mathematical Society 72(1): 161–172
Li J., Huang N.J. and Kim J.K. (2003). On implicit vector equilibrium problems. J. Math. Anal. Appl. 283: 501–512
Li S.J., Teo K.L. and Yang X.Q. (2005). Generalized vector quasi-equilibrium problems. Math. Meth. Oper. Res. 61: 385–397
Lin L.J. and Chen H.L. (2005). The study of KKM theorems with applications to vector equilibrium problems and implicit vector variational inequalities problems. J. Global Optim. 32: 135–157
Mastroeni G. (2003). Gap functions for equilibrium problems. J. Global Optim. 27: 411–426
Yang X.Q. (2003). On the gap functions of prevariational inequalities. J. Optim. Theory Appl. 116: 437–452
Yang X.Q. and Yao J.C. (2002). Gap functions and existence of solutions to set-valued vector variational inequalities. J. Optim. Theory Appl. 115: 407–417
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the National Natural Science Foundation of China (10671135) and the Applied Research Project of Sichuan Province (05JY029-009-1).
Rights and permissions
About this article
Cite this article
Li, J., Huang, NJ. An extension of gap functions for a system of vector equilibrium problems with applications to optimization problems. J Glob Optim 39, 247–260 (2007). https://doi.org/10.1007/s10898-007-9137-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-007-9137-1
Keywords
- Vector equilibrium problem
- Optimization problem
- Generalized gap function
- The Lagrangian function
- Saddle point
- Weak duality