Abstract
In order to study the uniformly translating solution of some non-linear evolution equations such as the complex Ginzburg–Landau equation, this paper presents a qualitative analysis to a Duffing–van der Pol non-linear oscillator. Monotonic property of the bounded exact solution is established based on the construction of a convex domain. Under certain parametric choices, one first integral to the Duffing–van der Pol non-linear system is obtained by using the Lie symmetry analysis, which constitutes one of the bases for further work of obtaining uniformly translating solutions of the complex Ginzburg–Landau equation.
Similar content being viewed by others
References
Gao D.Y. (2000). Duality Principles in Nonconvex Systems: Theory, Methods and Applications. Kluwer Academic Publishers, Boston
Gao, D.Y.: In: Proceedings of IUTAM Symposium on Duality, Complementarity and Symmetry in Nonlinear Mechanics. Kluwer Academic Publishers, Boston (2004)
Kuyk W. (1977). Complementarity in Mathematics: A First Introduction to the Foundations of Mathematics and its History. D. Reidel Pub. Co., Boston
Klein Haneveld W.K. (1986). Duality in Stochastic Linear and Dynamic Programming. Springer-Verlag, New York
Ferris M.C., Mangasarian O.L., Pang J.S. (2001). Complementarity: Applications, Algorithms and Extensions. Kluwer Academic Publishers, Boston
Gao D.Y., Ogden R.W., Stavroulakis G. (2001). Nonsmooth and Nonconvex Mechanics: Modelling, Analysis and Numerical Methods. Kluwer Academic Publishers, London
Cottle R.W., Pang J.S., Stone R.E. (1992). The Linear Complementarity Problems. Academic Press, New York
Isac G. (1992). Complementarity Problems, Lecture Notes in Mathematics. Springer-Verlag, New York
Luo Z.Q., Pang J.S., Ralph D. (1996). Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge
Ferris M.C., Pang J.S. (1997). Engineering and economic applications of complementarity problems. SIAM Rev. 39: 669–713
Pang J.S. (1994). Complementarity problems. In: Horst, R, Padalos, P. (eds) Handbook in Global Optimization., pp. Kluwer, Boston
Gao D.Y. (1998). Bi-complementarity and duality: A framework in nonlinear equilibria with applications to the contact problems of elastoplastic beam theory. J. Appl. Math. Anal. 221: 672–697
Jordan D.W., Smith P. (1977). Nonlinear Ordinary Differential Equations. Clarendon Press, Oxford
Thompson J.M.T., Stewart H.B. (1986). Nonlinear Dynamics and Chaos. John Wiley & Sons, New York
Pezeshki C., Dowell E.H. (1987). An examination of initial condition maps for the sinusoidally excited buckled beam modeled by the Duffing’s equation. J. Sound Vibration 117: 219–232
Moon F.C. (1987). Chaotic Vibrations: an Introduction for Applied Scientists and Engineers. John Wiley & Sons, New York
Dowell E.H., Pezeshki C. (1986). On the understanding of chaos in Duffing’s equation including a comparison with experiment. Trans. ASME J. Appl. Mech. 53: 5–9
Ku Y.H., Sun X.G. (1990). Chaos and limit cycle in Duffing’s equation. J. Franklin Inst. 327: 165–195
Battelli F., Palmer K.J. (1993). Chaos in the Duffing equation. J. Diff. Equs. 101: 276–301
Senthil M., Lakshmanan M. (1995). Lie symmetries and infinite-dimensional Lie algebras of certain nonlinear dissipative systems. J. Phys. A (Math. Gen.) 28: 1929–1942
Hsu L., Kamran N. (1988). Symmetries of second-order ordinary differential equations and Elie Cartan’s method of equivalence. Lett. Math. Phys. 15: 91–99
Zhang Z.F., Ding T.R., Huang W.Z., Dong Z.X. (1997). Qualitative Analysis of Nonlinear Differential Equations. Science Press, Beijing
Cartwright M.L. (1952). Van der Pol’s equation for relaxation oscillations (Contributions to the Theory of Nonlinear Oscillations), Vol. II, pp. 3–18. Princeton University Press, Princeton
Davis R.T., Alfriend K.T. (1967). Solutions to van der Pol’s equation using a perturbation method. Int. J. Non-Linear Mech. 2: 153–162
Chandrasekar V.K., Senthilvelan M., Lakshmanan M. (2004). New aspects of integrability of force-free Duffing–van der Pol oscillator and related nonlinear systems. J. Phys. A 37: 4527–4534
Loria A., Panteley E., Nijmeijer H. (1998). Control of the chaotic Duffing equation with uncertainty in all parameters. IEEE Trans. Circuits Syst. I 45: 1252–1255
Chen G., Dong X. (1998). From Chaos to Order: Perspetives, Methodologies and Applications. World Scientific Press, Singapore
Jiang Z.P. (2002). Advanced feedback control of the chaotic Duffing’s equation. IEEE Trans. Circuits Syst. I 49: 244–249
Nijmeijer H., Berghuis H. (1995). On Lyapunov control of the Duffing equation. IEEE Trans. Circuits Syst. I 42: 473–477
Holmes P.J. (1979). A nonlinear oscillator with a strange attractor. Proc. R. Sot. 292: 419–448
Holmes P.J., Moon F.C. (1983). Strange attractors and chaos in nonlinear mechanics. J. Appl. Mech. 50: 1021–1032
Seydel R. (1985). Attractors of a Duffing equation-dependence on the exciting frequency. Phys. D 17: 308–312
Holmes P.J., Whitley D. (1983). On the attracting set for Duffing’s equation. Phys. D 7: 111–123
McCartin B.J. (1992). An alternative analysis of Duffing’s equation. SIAM Rev. 34: 482–491
Blair K.B., Krousgrill C.M., Farris T.N. (1997). Harmonic balance and continuation techniques in the dynamic analysis of Duffing’s equation. J. Sound Vibration 202: 717–731
Holmes P.J. (1981). New Approaches to Nonlinear Problems in Dynamics. SIAM, Philadelphia, PA
Habets P., Metzen G. (1989). Existence of perodic solutions of Duffing’s equation. J. Diff. Equs. 78: 1–32
Wang H.Z., Li Y. (1994). Existence and uniqueness of periodic solutions for Duffing equation. J. DifF. Equs. 108: 152–169
Wang C.W. (1998). Multiplicity of periodic solutions for Duffing equation under nonuniform non-resonance conditions. Proc. Am. Math. Soc. 126: 1725–1732
Ding T., Iannacci R., Zanolin F. (1991). On periodic solutions of sublinear Duffing equations. J. Math. Anal. Appl. 158: 316–332
Fang T., Dowell E.H. (1987). Numerical simulations of jump phenomena in stable Duffing systems. Int. J. Non-Linear Mech. 22: 267–274
Khuri S.A., Xie S.S. (1999). On the numerical verification of the asymptotic expansion of Duffing’s equation. Int. J. Comput. Math. 72: 325–330
Matsuo T., Kishima A. (1992). Numerical analysis of bifurcations in Duffing’s equation with hysteretic functions. Electron. Comm. Japan Part III Fund. Electron. Sci. 75: 61–71
Zhang J.Y. (1987). Geometrical Analysis and Bifurcations of Ordinary Differential Equations. Peking University Press, Peking
Chen Y.Z. (2002). Solutions of the Duffing equation by using target function method. J. Sound Vibration 256: 573–578
Ince E.L. (1956). Ordinary Differential Equations. Dover Publications, New York
Lawden D.F. (1989). Elliptic Functions and Applications. Springer-Verlag, New York
Hale J.K., Spezamiglio A. (1985). Perturbation of homoclinics and subharmonics in Duffing’s equation. Nonlin. Anal. 9: 181–192
van Saarloos W., Hohenberg P.C. (1992). Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations. Phys. D 56: 303–367
Brand H.R., Deissler R.J. (1989). Interaction of localized solutions for subcritical bifurcations. Phys. Rev. Lett. 63: 2801–2804
van Saarloos W., Hohenberg P.C. (1990). Pulses and fronts in the complex Ginzburg-Landau equation near a subcritical Bifurcation. Phys. Rev. Lett. 64: 749–752
Kolodner P. (1992). Extended states of nonlinear traveling-wave convection (I)—the Eckhaus instability. Phys. Rev. E 46: 6431–6451
Brand H.R., Deissler R.J. (1992). Eckhaus and Benjamin–Feir instabilities near a weakly inverted bifurcation. Phys. Rev. A 45: 3732–3736
Pang P.H., Wang M.X. (2003). Qualitative analysis of a ratio-dependent predator–prey system with diffusion. Proc. Roy. Soc. Edinburgh Sect. A 133: 919–942
Baker R.L. (1999). The qualitative analysis of a dynamical system of differential equations arising from the study of multilayer scales on pure metals. Proc. Am. Math. Soc. 127: 753–761
Akuezue H.C., Baker R.L., Hirsch M.W. (1994). The qualitative analysis of a dynamical system modeling the formation of multilayer scales on pure metals. SIAM J. Math. Anal. 25: 1167–1175
Bluman G.W., Anco S.C. (2002). Symmetry and Integration Methods for Differential Equations. Springer-Verlag, New York
Olver P.J. (1993). Applications of Lie Groups to Differential Equations. Springer-Verlag, New York
Hydon P.E. (1998). Discrete point symmetries of ordinary differential equations. Proc. Roy. Soc. Lond. A 454: 1961–1972
Clarkson P.A. (1995). Nonclassical symmetry reductions of the Boussinesq equation, Solitons in science and engineering: theory and applications. Chaos Solitons Fractals 5: 2261–2301
Ibragimov N.H. (1994). CRC Handbook of Lie Group Analysis of Differential Equations (I): Symmetries, Exact Solutions and Conservation Laws. CRC Press, Boca Raton
Bluman, G.W., Kumei S.: Symmetries and Differential Equations. Springer-Verlag (1991)
Lakshmanan M., Kaliappan P. (1983). Lie transformations, nonlinear evolution equations and Painlevé forms. J. Math. Phys. 24: 795–806
Feng, Z., Gao, D.Y.: Exact solutions to a nonconvex dissipative system, following paper, J. Global Optim (in press)
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Professor G. Strang on the occasion of his 70th birthday
The work has been presented at the International Conference on Complementarity, Duality, and Global Optimization in Science and Engineering, Virginia Tech. University, Blacksburg, Virginia, August 15–17, 2005. The author would like to thank the organizers Professors David Y. Gao and Hanif D. Sherali for their generous support. This work is partly supported by NSF Grant CCF–0514768.
Rights and permissions
About this article
Cite this article
Feng, Z. A nonconvex dissipative system and its applications (I). J Glob Optim 40, 623–636 (2008). https://doi.org/10.1007/s10898-006-9115-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-006-9115-z