[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian*

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study convergence properties of a modified subgradient algorithm, applied to the dual problem defined by the sharp augmented Lagrangian. The primal problem we consider is nonconvex and nondifferentiable, with equality constraints. We obtain primal and dual convergence results, as well as a condition for existence of a dual solution. Using a practical selection of the step-size parameters, we demonstrate the algorithm and its advantages on test problems, including an integer programming and an optimal control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.Y. Azimov R.N. Gasimov (2002) ArticleTitleStability and duality of nonconvex problems via augmented lagrangian Cybernetics and Systems Analysis. 38 412–421 Occurrence Handle10.1023/A:1020316811823

    Article  Google Scholar 

  2. A.Y. Azimov R.N. Gasimov (1999) ArticleTitleOn weak conjugacy, weak subdifferentials and duality with zero gap in nonconvex optimization International Journal of Applied Mathematics. 1 IssueID4 171–192

    Google Scholar 

  3. M.S. Bazaraa H.D. Sherali C.M. Shetty (1993) Nonlinear Programming: Theory and Algorithms John Wiley & Sons Inc. New York

    Google Scholar 

  4. M.S. Bazaraa H.D. Sherali (1981) ArticleTitleOn the choice of step sizes in subgradient optimization European Journal of Operations Research. 7 380–388 Occurrence Handle10.1016/0377-2217(81)90096-5

    Article  Google Scholar 

  5. D.P. Bertsekas (1995) Nonlinear Programming Athena Scientific Belmont Massachusetts

    Google Scholar 

  6. V.F. Demyanov (1968) ArticleTitleAlgorithms for some minimax problems Journal of Computer and Systems Sciences. 2 342–380

    Google Scholar 

  7. A.C. Floudas P.M. Pardalos C.S. Adjiman W.R. Esposito Z.H. Gümüş S.T. Harding J.L. Klepeis C.A. Meyer C.A. Schweiger (1999) Handbook of Test Problems in Local and Global Optimization Kluwer Academic Publishers the Netherlands

    Google Scholar 

  8. R.N. Gasimov (2002) ArticleTitleAugmented Lagrangian duality and nondifferentiable optimization methods in nonconvex programming Journal of Global Optimization. 24 187–203 Occurrence Handle10.1023/A:1020261001771

    Article  Google Scholar 

  9. R.N. Gasimov A.M. Rubinov (2004) ArticleTitleOn augmented Lagrangians for optimization problems with a single constraint Journal of Global Optimization. 28 IssueID2 153–173 Occurrence Handle10.1023/B:JOGO.0000015309.88480.2b

    Article  Google Scholar 

  10. C.Y. Kaya J.L. Noakes (1996) ArticleTitleComputations and time-optimal controls Optimal Control Applications and Methods. 17 171–185 Occurrence Handle10.1002/(SICI)1099-1514(199607/09)17:3<171::AID-OCA571>3.0.CO;2-9

    Article  Google Scholar 

  11. C.Y. Kaya J.L. Noakes (2003) ArticleTitleComputational method for time-optimal switching control Journal of Optimization Theory and Applications. 117 IssueID1 69–92 Occurrence Handle10.1023/A:1023600422807

    Article  Google Scholar 

  12. S. Kim A. Hyunsil (1991) ArticleTitleConvergence of a generalized subgradient method for nondifferentiable convex optimization Mathematical Programming. 50 75–80 Occurrence Handle10.1007/BF01594925

    Article  Google Scholar 

  13. I.V. Konnov (2003) ArticleTitleOn convergence properties of a subgradient method Optimization Methods and Software. 18 IssueID1 53–62 Occurrence Handle10.1080/1055678031000111236

    Article  Google Scholar 

  14. H. Maurer N.P. Osmolovskii (2004) ArticleTitleSecond order sufficient conditions for time-optimal bang-bang control problems SIAM Journal on Optimization and Control. 42 IssueID6 2239–2263

    Google Scholar 

  15. Murtagh, B.A. and Saunders, M.A. (1983). MINOS 5.4 User’s Guide. Systems Optimization Laboratory, Department of Operations Research, Stanford University, Technical Report SOL 83-20R.

  16. B.T. Polyak (1969) ArticleTitleThe conjugate gradient method in extremal problems Z. Vychislitelnoy Matematiki i Matematicheskoy Fiziki. 9 94–112

    Google Scholar 

  17. B.T. Polyak (1969) ArticleTitleMinimization of unsmooth functionals Z. Vychislitelnoy Matematiki i Matematicheskoy Fiziki. 9 14–29

    Google Scholar 

  18. B.T. Polyak (1969) ArticleTitleIterative methods using Lagrange multipliers for solving extremal problems with constraints of the equation type Z. Vychislitelnoy Matematiki i Matematicheskoy Fiziki. 10 1098–1106

    Google Scholar 

  19. B.T. Polyak (1987) Introduction to Optimization Optimization Software Inc., Publications Division New York

    Google Scholar 

  20. R.T. Rockafellar R.J.-B. Wets (1998) Variational Analysis Springer Berlin

    Google Scholar 

  21. R.T. Rockafellar (1993) ArticleTitleLagrange multipliers and optimality SIAM Review. 35 183–238 Occurrence Handle10.1137/1035044

    Article  Google Scholar 

  22. A.M. Rubinov (2000) Abstract Convexity and Global Optimization Kluwer Academic Publishers Dordrecht

    Google Scholar 

  23. A.M. Rubinov X.Q. Yang A.M. Bagirov R.N. Gasimov (2003) ArticleTitleLagrange-type functions in constrained optimization Journal of Mathematical Sciences. 115 IssueID4 2437–2505 Occurrence Handle10.1023/A:1022927915135

    Article  Google Scholar 

  24. A.M. Rubinov R.N. Gasimov (2002) ArticleTitleThe nonlinear and augmented Lagrangians for nonconvex optimizations problems with a single constraint Applied and Computational Mathematics. 1 IssueID2 142–157

    Google Scholar 

  25. A.M. Rubinov R.N. Gasimov (2003) ArticleTitleStrictly increasing positively homogeneous functions with applications to exact penalization Optimization 52 IssueID1 1–28 Occurrence Handle10.1080/0233193021000058931

    Article  Google Scholar 

  26. A.M. Rubinov B.M. Glover X.Q. Yang (1999) ArticleTitleDecreasing functions with applications to penalization SIAM Journal on Optimization. 10 289–313 Occurrence Handle10.1137/S1052623497326095

    Article  Google Scholar 

  27. H.D. Sherali G. Choi C.H. Tuncbilek (2000) ArticleTitleA variable target value method for nondifferentiable optimization Operations Research Letters. 26 1–8 Occurrence Handle10.1016/S0167-6377(99)00063-2

    Article  Google Scholar 

  28. N.Z. Shor (1985) Minimization Methods For Nondifferentiable Functions Springer Verlag Berlin

    Google Scholar 

  29. N.Z. Shor (1995) ArticleTitleDual estimates in multiextremal problems Journal of Global Optimization. 7 75–91

    Google Scholar 

  30. Simakov, S.T., Kaya, C.Y. and Lucas, S.K. (2002), Computations for time-optimal bang-bang control using a Lagrangian formulation, Preprints of IFAC 15th Triennial World Congress, Barcelona, Spain.

  31. X.Q. Yang X.X. Hung (2001) ArticleTitleA nonlinear Lagrangian approach to constrained optimization problems SIAM Journal on Optimization. 14 1119–1144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina S. Burachik.

Additional information

*Partially Supported by 2003 UniSA ITEE Small Research Grant Ero2.

Supported by CAPES, Brazil, Grant No. 0664-02/2, during her visit to the School of Mathematics and Statistics, UniSA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burachik, R.S., Gasimov, R.N., Ismayilova, N.A. et al. On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian*. J Glob Optim 34, 55–78 (2006). https://doi.org/10.1007/s10898-005-3270-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-005-3270-5

Keywords

Mathematics Subject Classifications

Navigation