Abstract
We study convergence properties of a modified subgradient algorithm, applied to the dual problem defined by the sharp augmented Lagrangian. The primal problem we consider is nonconvex and nondifferentiable, with equality constraints. We obtain primal and dual convergence results, as well as a condition for existence of a dual solution. Using a practical selection of the step-size parameters, we demonstrate the algorithm and its advantages on test problems, including an integer programming and an optimal control problem.
Similar content being viewed by others
References
A.Y. Azimov R.N. Gasimov (2002) ArticleTitleStability and duality of nonconvex problems via augmented lagrangian Cybernetics and Systems Analysis. 38 412–421 Occurrence Handle10.1023/A:1020316811823
A.Y. Azimov R.N. Gasimov (1999) ArticleTitleOn weak conjugacy, weak subdifferentials and duality with zero gap in nonconvex optimization International Journal of Applied Mathematics. 1 IssueID4 171–192
M.S. Bazaraa H.D. Sherali C.M. Shetty (1993) Nonlinear Programming: Theory and Algorithms John Wiley & Sons Inc. New York
M.S. Bazaraa H.D. Sherali (1981) ArticleTitleOn the choice of step sizes in subgradient optimization European Journal of Operations Research. 7 380–388 Occurrence Handle10.1016/0377-2217(81)90096-5
D.P. Bertsekas (1995) Nonlinear Programming Athena Scientific Belmont Massachusetts
V.F. Demyanov (1968) ArticleTitleAlgorithms for some minimax problems Journal of Computer and Systems Sciences. 2 342–380
A.C. Floudas P.M. Pardalos C.S. Adjiman W.R. Esposito Z.H. Gümüş S.T. Harding J.L. Klepeis C.A. Meyer C.A. Schweiger (1999) Handbook of Test Problems in Local and Global Optimization Kluwer Academic Publishers the Netherlands
R.N. Gasimov (2002) ArticleTitleAugmented Lagrangian duality and nondifferentiable optimization methods in nonconvex programming Journal of Global Optimization. 24 187–203 Occurrence Handle10.1023/A:1020261001771
R.N. Gasimov A.M. Rubinov (2004) ArticleTitleOn augmented Lagrangians for optimization problems with a single constraint Journal of Global Optimization. 28 IssueID2 153–173 Occurrence Handle10.1023/B:JOGO.0000015309.88480.2b
C.Y. Kaya J.L. Noakes (1996) ArticleTitleComputations and time-optimal controls Optimal Control Applications and Methods. 17 171–185 Occurrence Handle10.1002/(SICI)1099-1514(199607/09)17:3<171::AID-OCA571>3.0.CO;2-9
C.Y. Kaya J.L. Noakes (2003) ArticleTitleComputational method for time-optimal switching control Journal of Optimization Theory and Applications. 117 IssueID1 69–92 Occurrence Handle10.1023/A:1023600422807
S. Kim A. Hyunsil (1991) ArticleTitleConvergence of a generalized subgradient method for nondifferentiable convex optimization Mathematical Programming. 50 75–80 Occurrence Handle10.1007/BF01594925
I.V. Konnov (2003) ArticleTitleOn convergence properties of a subgradient method Optimization Methods and Software. 18 IssueID1 53–62 Occurrence Handle10.1080/1055678031000111236
H. Maurer N.P. Osmolovskii (2004) ArticleTitleSecond order sufficient conditions for time-optimal bang-bang control problems SIAM Journal on Optimization and Control. 42 IssueID6 2239–2263
Murtagh, B.A. and Saunders, M.A. (1983). MINOS 5.4 User’s Guide. Systems Optimization Laboratory, Department of Operations Research, Stanford University, Technical Report SOL 83-20R.
B.T. Polyak (1969) ArticleTitleThe conjugate gradient method in extremal problems Z. Vychislitelnoy Matematiki i Matematicheskoy Fiziki. 9 94–112
B.T. Polyak (1969) ArticleTitleMinimization of unsmooth functionals Z. Vychislitelnoy Matematiki i Matematicheskoy Fiziki. 9 14–29
B.T. Polyak (1969) ArticleTitleIterative methods using Lagrange multipliers for solving extremal problems with constraints of the equation type Z. Vychislitelnoy Matematiki i Matematicheskoy Fiziki. 10 1098–1106
B.T. Polyak (1987) Introduction to Optimization Optimization Software Inc., Publications Division New York
R.T. Rockafellar R.J.-B. Wets (1998) Variational Analysis Springer Berlin
R.T. Rockafellar (1993) ArticleTitleLagrange multipliers and optimality SIAM Review. 35 183–238 Occurrence Handle10.1137/1035044
A.M. Rubinov (2000) Abstract Convexity and Global Optimization Kluwer Academic Publishers Dordrecht
A.M. Rubinov X.Q. Yang A.M. Bagirov R.N. Gasimov (2003) ArticleTitleLagrange-type functions in constrained optimization Journal of Mathematical Sciences. 115 IssueID4 2437–2505 Occurrence Handle10.1023/A:1022927915135
A.M. Rubinov R.N. Gasimov (2002) ArticleTitleThe nonlinear and augmented Lagrangians for nonconvex optimizations problems with a single constraint Applied and Computational Mathematics. 1 IssueID2 142–157
A.M. Rubinov R.N. Gasimov (2003) ArticleTitleStrictly increasing positively homogeneous functions with applications to exact penalization Optimization 52 IssueID1 1–28 Occurrence Handle10.1080/0233193021000058931
A.M. Rubinov B.M. Glover X.Q. Yang (1999) ArticleTitleDecreasing functions with applications to penalization SIAM Journal on Optimization. 10 289–313 Occurrence Handle10.1137/S1052623497326095
H.D. Sherali G. Choi C.H. Tuncbilek (2000) ArticleTitleA variable target value method for nondifferentiable optimization Operations Research Letters. 26 1–8 Occurrence Handle10.1016/S0167-6377(99)00063-2
N.Z. Shor (1985) Minimization Methods For Nondifferentiable Functions Springer Verlag Berlin
N.Z. Shor (1995) ArticleTitleDual estimates in multiextremal problems Journal of Global Optimization. 7 75–91
Simakov, S.T., Kaya, C.Y. and Lucas, S.K. (2002), Computations for time-optimal bang-bang control using a Lagrangian formulation, Preprints of IFAC 15th Triennial World Congress, Barcelona, Spain.
X.Q. Yang X.X. Hung (2001) ArticleTitleA nonlinear Lagrangian approach to constrained optimization problems SIAM Journal on Optimization. 14 1119–1144
Author information
Authors and Affiliations
Corresponding author
Additional information
*Partially Supported by 2003 UniSA ITEE Small Research Grant Ero2.
Supported by CAPES, Brazil, Grant No. 0664-02/2, during her visit to the School of Mathematics and Statistics, UniSA.
Rights and permissions
About this article
Cite this article
Burachik, R.S., Gasimov, R.N., Ismayilova, N.A. et al. On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian*. J Glob Optim 34, 55–78 (2006). https://doi.org/10.1007/s10898-005-3270-5
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10898-005-3270-5
Keywords
- Augmented Lagrangian
- Nonconvex programming
- Nonsmooth optimization
- Sharp Lagrangian
- Subgradient optimization