[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the extremal cacti of given parameters with respect to the difference of zagreb indices

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

The first and the second Zagreb indices of a graph G are defined as \(M_1(G)= \sum _{v\in V_G}d_v^2 \) and \( M_2(G)= \sum _{uv\in E_G}d_ud_v\), where \(d_v,\, d_u\) are the degrees of vertices \(v,\, u\) in G. The difference of Zagreb indices of G is defined as \(\Delta M(G)=M_2(G)-M_1(G)\). A cactus is a connected graph in which every block is either an edge or a cycle. Let \(\mathscr {C}_{n,k}\) be the set of all n-vertex cacti with k pendant vertices and let \(\mathscr {C}_n^r\) be the set of all n-vertex cacti with r cycles. In this paper, the sharp upper bound on \(\Delta M(G)\) of graph G among \(\mathscr {C}_{n,k}\) (resp. \(\mathscr {C}_n^r\)) is established. Combining the results in Furtula et al. (Discrete Appl Math 178:83–88, 2014) and our results obtained in the current paper, sharp upper bounds on \(\Delta M(G)\) of n-vertex cacti and n-vertex unicyclic graphs are determined, respectively. All the extremal graphs are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • An MQ, Xiong LM (2015) Some results on the difference of the Zagreb indices of a graph. Bull Aust Math Soc 92(2):177–186

    Article  MathSciNet  MATH  Google Scholar 

  • Balaban AT, Motoc I, Bonchev D, Mekenyan O (1983) Topological indices for structure-activity correlations. Top Curr Chem 114:21–55

    Article  Google Scholar 

  • Bondy JA, Murty USR (2008) Graph theory. Springer, Springer GTM 244

    Book  MATH  Google Scholar 

  • Borovićanin B, Furtula B (2016) On extremal Zagreb indices of trees with given domination number. Appl Math Comput 279:208–218

    MathSciNet  MATH  Google Scholar 

  • Borovićanin B, Das KCh, Furtula B, Gutman I (2017) Bounds for Zagreb indices. MATCH Commun Math Comput Chem 78:17–100

    MathSciNet  Google Scholar 

  • Caporossi G, Hansen P (2000) Variable neighborhood search for extremal graphs. 1. The AutoGraphiX system. Discrete Math 212:29–44

    Article  MathSciNet  MATH  Google Scholar 

  • Caporossi G, Hansen P (2004) Variable neighborhood search for extremal graphs. 5. Three ways to automate finding conjectures. Discrete Math 276:81–94

    Article  MathSciNet  MATH  Google Scholar 

  • Caporossi G, Hansen P, Vukičević D (2010) Comparing Zagreb indices of cyclic graphs. MATCH Commun Math Comput Chem 63(2):441–451

    MathSciNet  MATH  Google Scholar 

  • Feng YQ, Hu X, Li SC (2010) On the extremal Zagreb indices of graphs with cut edges. Acta Appl Math 110(2):667–684

    Article  MathSciNet  MATH  Google Scholar 

  • Furtula B, Gutman I, Ediz S (2014) On difference of Zagreb indices. Discrete Appl Math 178:83–88

    Article  MathSciNet  MATH  Google Scholar 

  • Gutman I (2013) Degree-based topological indices. Croat Chem Acta 86:351–361

    Article  Google Scholar 

  • Gutman I, Das KC (2004) The first Zagreb index 30 years after. MATCH Commun Math Comput Chem 50:83–92

    MathSciNet  MATH  Google Scholar 

  • Gutman I, Trinajstić N (1972) Graph theory and molecular Total orbitals. \(\pi \)-electron energy of alternant hydrocarbons. Chem Phys Lett 179:535–538

    Article  Google Scholar 

  • Gutman I, Ruščić B, Trinajstić N, Wilcox CF (1975) Graph theory and molecular orbitals. XII. Acyclic polyenes. J Phys Chem 62:3399–3405

    Article  Google Scholar 

  • Hansen P, Vukičević D (2007) Comparing the Zagreb indices. Croat Chem Acta 80:165–168

    Google Scholar 

  • He WH, Li H, Xiao SF (2017) On the minimum Kirchhoff index of graphs with a given vertex \(k\)-partiteness and edge \(k\)-partiteness. Appl Math Comput 315:313–318

    MathSciNet  MATH  Google Scholar 

  • Horoldagva B, Das KC, Selenge T (2016) Complete characterization of graphs for direct comparing Zagreb indices. Discrete Appl Math 215:146–154

    Article  MathSciNet  MATH  Google Scholar 

  • Horoldagva B, Buyantogtokh L, Dorjsembe S (2017) Difference of Zagreb indices and reduced second Zagreb index of cyclic graphs with cut edges. MATCH Commun Math Comput Chem 78:337–350

    MathSciNet  Google Scholar 

  • Hou AL, Li SC, Song LZ, Wei B (2011) Sharp bounds for Zagreb indices of maximal outerplanar graphs. J Comb Optim 22(2):252–269

    Article  MathSciNet  MATH  Google Scholar 

  • Li SC, Zhang MJ (2011) Sharp upper bounds for Zagreb indices of bipartite graphs with a given diameter. Appl Math Lett 24(2):131–137

    Article  MathSciNet  MATH  Google Scholar 

  • Li SC, Zhao Q (2011) Sharp upper bounds on Zagreb indices of bicyclic graphs with a given matching number. Math Comput Model 54(11–12):2869–2879

    Article  MathSciNet  MATH  Google Scholar 

  • Li SC, Zhou HB (2010) On the maximum and minimum Zagreb indices of graphs with connectivity at most \(k\). Appl Math Lett 23(2):128–132

    Article  MathSciNet  MATH  Google Scholar 

  • Milošević M, Réti T, Stevanović D (2012) On the constant difference of Zagreb indices. MATCH Commun Math Comput Chem 68:157–168

    MathSciNet  MATH  Google Scholar 

  • Nikolić S, Kovačević G, Miličević A, Trinajstić N (2003) The Zagreb indices 30 years after. Croat Chem Acta 76:113–124

    Google Scholar 

  • Sah A, Sawhney M (2018) On the discrepancy between two Zagreb indices. Discrete Math 341(9):2575–2589

    Article  MathSciNet  MATH  Google Scholar 

  • Selenge T-A, Horoldagva B, Das KC (2017) Direct comparison of the variable Zagreb indices of cyclic graphs. MATCH Commun Math Comput Chem 78(2):351–360

    MathSciNet  Google Scholar 

  • Vetrík T, Balachandran S (2018) General multiplicative Zagreb indices of trees. Discrete Appl Math 247:341–351

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Yuan S (2016) On the sum of squares of degrees and products of adjacent degrees. Discrete Math 339:1212–1220

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan WG, Zhang XD (2015) The second Zagreb indices of graphs with given degree sequence. Discrete Appl Math 185:230–238

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao Q, Li SC (2010a) Sharp bounds for the Zagreb indices of bicyclic graphs with \(k\)-pendant vertices. Discrete Appl Math 158(17):1953–1962

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao Q, Li SC (2010b) On the maximum Zagreb indices of graphs with \(k\) cut vertices. Acta Appl Math 111(1):93–106

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuchao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.L. acknowledges the financial support from the National Natural Science Foundation of China (Grant Nos. 11671164, 11271149).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, L. & Zhang, M. On the extremal cacti of given parameters with respect to the difference of zagreb indices. J Comb Optim 38, 421–442 (2019). https://doi.org/10.1007/s10878-019-00391-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-019-00391-4

Keywords

Navigation