[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The (vertex-)monochromatic index of a graph

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

A tree T in an edge-colored (vertex-colored) graph H is called a monochromatic (vertex-monochromatic) tree if all the edges (internal vertices) of T have the same color. For \(S\subseteq V(H)\), a monochromatic (vertex-monochromatic) S-tree in H is a monochromatic (vertex-monochromatic) tree of H containing the vertices of S. For a connected graph G and a given integer k with \(2\le k\le |V(G)|\), the k -monochromatic index \(mx_k(G)\) (k -monochromatic vertex-index \(mvx_k(G)\)) of G is the maximum number of colors needed such that for each subset \(S\subseteq V(G)\) of k vertices, there exists a monochromatic (vertex-monochromatic) S-tree. For \(k=2\), Caro and Yuster showed that \(mc(G)=mx_2(G)=|E(G)|-|V(G)|+2\) for many graphs, but it is not true in general. In this paper, we show that for \(k\ge 3\), \(mx_k(G)=|E(G)|-|V(G)|+2\) holds for any connected graph G, completely determining the value. However, for the vertex-version \(mvx_k(G)\) things will change tremendously. We show that for a given connected graph G, and a positive integer L with \(L\le |V(G)|\), to decide whether \(mvx_k(G)\ge L\) is NP-complete for each integer k such that \(2\le k\le |V(G)|\). Finally, we obtain some Nordhaus–Gaddum-type results for the k-monochromatic vertex-index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bondy JA, Murty USR (1976) Graph theory with applications. The Macmillan Press, London

    Book  MATH  Google Scholar 

  • Cai Q, Li X, Wu D (2015a) Erdös–Gallai-type results for colorful monochromatic connectivity of a graph. J Comb Optim. doi:10.1007/s10878-015-9938-y, in press

  • Cai Q, Li X, Wu D (2015b) Some extremal results on the colorful monochromatic vertex-connectivity of a graph. arXiv:1503.08941

  • Caro Y, Lev A, Roditty Y, Tuza Z, Yuster R (2008) On rainbow connection. Electron J Combin 15(1):R57

    MathSciNet  MATH  Google Scholar 

  • Caro Y, Yuster R (2011) Colorful monochromatic connectivity. Discrete Math 311:1786–1792

    Article  MathSciNet  MATH  Google Scholar 

  • Chartrand G, Johns G, McKeon K, Zhang P (2008) Rainbow connection in graphs. Math Bohem 133:85–98

    MathSciNet  MATH  Google Scholar 

  • Chen L, Li X, Lian H (2013) Nordhaus–Gaddum-type theorem for rainbow connection number of graphs. Graphs Combin 29:1235–1247

    Article  MathSciNet  MATH  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability. Freeman, New York

    MATH  Google Scholar 

  • Harary F, Haynes TW (1996) Nordhaus–Gaddum inequalities for domination in graphs. Discrete Math 155:99–105

    Article  MathSciNet  MATH  Google Scholar 

  • Krivelevich M, Yuster R (2010) The rainbow connection of a graph is (at most) reciprocal to its minimum degree. J Graph Theory 63(3):185–191

    MathSciNet  MATH  Google Scholar 

  • Laskar R, Peters K (1985) Vertex and edge domination parameters in graphs. Congr Numer 48:291–305

    MathSciNet  MATH  Google Scholar 

  • Li X, Shi Y, Sun Y (2013) Rainbow connections of graphs: a survey. Graphs Combin 29:1–38

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Sun Y (2012) Rainbow connections of graphs. Springer briefs in math. Springer, New York

    Book  Google Scholar 

  • Nordhaus EA, Gaddum JW (1956) On complementary graphs. Am Math Monthly 63:175–177

    Article  MATH  Google Scholar 

  • Zhang L, Wu B (2005) The Nordhaus–Gaddum-type inequalities of some chemical indices. MATCH Commun Math Comput Chem 54:189–194

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Supported by NSFC No.11371205 and 11531011, “973” program No.2013CB834204, and PCSIRT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wu, D. The (vertex-)monochromatic index of a graph. J Comb Optim 33, 1443–1453 (2017). https://doi.org/10.1007/s10878-016-0048-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-016-0048-2

Keywords

Mathematics Subject Classification

Navigation