[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Coverage with k-transmitters in the presence of obstacles

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

For a fixed integer k≥0, a k-transmitter is an omnidirectional wireless transmitter with an infinite broadcast range that is able to penetrate up to k “walls”, represented as line segments in the plane. We develop lower and upper bounds for the number of k-transmitters that are necessary and sufficient to cover a given collection of line segments, polygonal chains and polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. The bound ⌈n/(2k+2)⌉ stated in Theorem 7 from Aichholzer et al. (2009b) is a typo.

References

  • Aichholzer O, Aurenhammer F, Hurtado F, Ramos P, Urrutia J (2009a) k-convex polygons. In: Proc 25th European conference on computational geometry, pp 117–120

    Google Scholar 

  • Aichholzer O, Fabila-Monroy R, Flores-Peñaloza D, Hackl T, Huemer C, Urrutia J, Vogtenhuber B (2009b) Modem illumination of monotone polygons. In: Proc 25th European conference on computational geometry, pp 167–170

    Google Scholar 

  • Appel K, Haken W (1989) Every planar map is four colorable. Contemporary mathematics, vol 98.

    Book  MATH  Google Scholar 

  • Borodin O (1984) Solution of Ringel’s problem on vertex-face coloring of plane graphs and coloring of 1-planar graphs (in Russian). Metody Diskret Analiz 41:12–26

    MathSciNet  MATH  Google Scholar 

  • Borodin O (1995) A new proof of the 6 color theorem. J Graph Theory 19(4):507–521

    Article  MathSciNet  MATH  Google Scholar 

  • Borodin O, Sanders DP, Zhao Y (1999) On cyclic colorings and their generalizations. Discrete Math 203(1–3):23–40

    Article  MathSciNet  MATH  Google Scholar 

  • Christ T, Hoffmann M, Okamoto Y, Uno T (2008) Improved bounds for wireless localization. In: SWAT ’08: proceedings of the 11th Scandinavian workshop on algorithm theory. Springer, Berlin/Heidelberg, pp 77–89

    Chapter  Google Scholar 

  • Chvátal V (1975) A combinatorial theorem in plane geometry. J Comb Theory, Ser B 18:39–41

    Article  MATH  Google Scholar 

  • Czyzowicz J, Rivera-Campo E, Santoro N, Urrutia J, Zaks J (1994) Guarding rectangular art galleries. Discrete Appl Math 50:149–157

    Article  MathSciNet  MATH  Google Scholar 

  • Damian M, Flatland R, O’Rourke J, Ramaswami S (2007) A new lower bound on guard placement for wireless localization. In: FWCG 07: proc of the 17th fall workshop on computational geometry, pp 21–24

    Google Scholar 

  • Dean AM, Evans W, Gethner E, Laison J, Safari MA, Trotter WT (2005) Bar k-visibility graphs: bounds on the number of edges, chromatic number, and thickness. In: Proc of graph drawing. LNCS, vol 3843, pp 73–82

    Google Scholar 

  • Eppstein D, Goodrich MT, Sitchinava N (2007) Guard placement for efficient point-in-polygon proofs. In: SoCG, pp 27–36

    Google Scholar 

  • Fabila-Monroy R, Vargas AR, Urrutia J (2009) On modem illumination problems. In: XIII encuentros de geometria computacional, Zaragoza, Spain

    Google Scholar 

  • Felsner S, Massow M (2008) Parameters of bar k-visibility graphs. J Graph Algorithms Appl 12(1):5–27

    Article  MathSciNet  MATH  Google Scholar 

  • Fulek R, Holmsen AF, Pach J (2009) Intersecting convex sets by rays. Discrete Comput Geom 42(3):343–358

    Article  MathSciNet  MATH  Google Scholar 

  • Hartke SG, Vandenbussche J, Wenger P (2007) Further results on bar k-visibility graphs. SIAM J Discrete Math 21(2):523–531

    Article  MathSciNet  MATH  Google Scholar 

  • Lee DT, Lin AK (1986) Computational complexity of art gallery problems. IEEE Trans Inf Theory 32(2):276–282

    Article  MathSciNet  MATH  Google Scholar 

  • O’Rourke J (1987) Art gallery theorems and algorithms. Oxford University Press, New York

    MATH  Google Scholar 

  • Sanders DP, Zhao Y (2001) A new bound on the cyclic chromatic number. J Comb Theory, Ser B 83(1):102–111

    Article  MathSciNet  MATH  Google Scholar 

  • Urrutia J (2000) Art gallery and illumination problems. In: Sack J-R, Urrutia J (eds) Handbook of computational geometry. North-Holland, Amsterdam, pp 973–1027

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirela Damian.

Additional information

F. Hurtado and V. Sacristán were partly supported by the ESF EUROCORES programme EUROGIGA-ComPoSe IP04-MICINN Project EUI-EURC-2011-4306, and projects MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.

M. Damian was partly supported by NSF grant CCF-0728909.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballinger, B., Benbernou, N., Bose, P. et al. Coverage with k-transmitters in the presence of obstacles. J Comb Optim 25, 208–233 (2013). https://doi.org/10.1007/s10878-012-9475-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-012-9475-x

Keywords

Navigation