[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Acyclic edge coloring of planar graphs without 4-cycles

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a′(G) of G is the smallest integer k such that G has an acyclic edge coloring using k colors. Fiamčik (Math. Slovaca 28:139–145, 1978) and later Alon, Sudakov and Zaks (J. Graph Theory 37:157–167, 2001) conjectured that a′(G)≤Δ+2 for any simple graph G with maximum degree Δ. In this paper, we confirm this conjecture for planar graphs G with Δ≠4 and without 4-cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alon N, McDiarmid C, Reed B (1991) Acyclic coloring of graphs. Random Struct Algorithms 2:277–288

    Article  MathSciNet  MATH  Google Scholar 

  • Alon N, Sudakov B, Zaks A (2001) Acyclic edge colorings of graphs. J Graph Theory 37:157–167

    Article  MathSciNet  MATH  Google Scholar 

  • Basavaraju M, Chandran LS (2008) Acyclic edge coloring of subcubic graphs. Discrete Math 308:6650–6653

    Article  MathSciNet  MATH  Google Scholar 

  • Basavaraju M, Chandran LS (2009) Acyclic edge coloring of graphs with maximum with degree 4. J Graph Theory 61:192–209

    Article  MathSciNet  MATH  Google Scholar 

  • Basavaraju M, Chandran LS, Cohen N, Havet F, Müller T (2011) Acyclic edge-coloring of planar graphs. SIAM J Discrete Math 25:463–478

    Article  MathSciNet  MATH  Google Scholar 

  • Borowiecki M, Fiedorowicz A (2010) Acyclic edge coloring of planar graphs without short cycles. Discrete Math 310:1445–1455

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen N, Havet F, Müller T (2009) Acyclic edge-colouring of planar graphs. Extended abstract. Electron Notes Discrete Math 34:417–421

    Article  Google Scholar 

  • Dong W, Xu B (2010) Some results on acyclic edge coloring of plane graphs. Inf Process Lett 110:887–892

    Article  MathSciNet  MATH  Google Scholar 

  • Hou J, Wu J, Liu G, Liu B (2009) Acyclic edge colorings of planar graphs and series-parallel graphs. Sci China Ser A 52:605–616

    Article  MathSciNet  MATH  Google Scholar 

  • Hou J, Wu J, Liu G, Liu B (2010) Acyclic edge chromatic number of outerplanar graphs. J Graph Theory 64:22–36

    MathSciNet  MATH  Google Scholar 

  • Hou J, Liu G, Wu J (2011) Acyclic edge coloring of planar graphs without small cycles. Graphs Comb doi:10.1007/s00373-011-1043-0

    Google Scholar 

  • Fiamčik J (1978) The acyclic chromatic class of a graph. Math Slovaca 28:139–145 (in Russian)

    MathSciNet  MATH  Google Scholar 

  • Fiedorowicz A, Haluszczak M, Narayanan N (2008) About acyclic edge colourings of planar graphs. Inf Process Lett 108:412–417

    Article  MathSciNet  Google Scholar 

  • Molloy M, Reed B (1998) Further algorithmic aspects of Lovász local lemma. In: Proceedings of the 30th annual ACM symposium on theory of computing, pp 524–529

    Google Scholar 

  • Muthu R, Narayanan N, Subramanian CR (2007) Acyclic edge colouring of outerplanar graphs. Lect Notes Comput Sci 4508:144–152

    Article  Google Scholar 

  • Něsetřil J, Wormald NC (2005) The acyclic edge chromatic number of a random d-regular graph is d+1. J Graph Theory 49:69–74

    Article  MathSciNet  MATH  Google Scholar 

  • Shu Q, Wang W (2011) Acyclic chromatic indices of planar graphs with girth at least four (submitted)

  • Shu Q, Wang W (2012) Acyclic chromatic indices of planar graphs with girth at least five. J Comb Optim 23:140–157

    Article  MathSciNet  MATH  Google Scholar 

  • Skulrattanakulchai S (2004) Acyclic colorings of subcubic graphs. Inf Process Lett 92:161–167

    Article  MathSciNet  MATH  Google Scholar 

  • Vizing V (1964) On an estimate of the chromatic index of a p-graph. Diskretn Anal 3:25–30

    MathSciNet  Google Scholar 

  • Wang W, Shu Q (2011) Acyclic chromatic indices of K 4-minor free graphs. Sci China Ser A 41:733–744

    Google Scholar 

  • Wang W, Shu Q, Kan W, Wang P (2011) Acyclic chromatic indices of planar graphs with large girth. Discrete Appl Math 159:1239–1253

    Article  MathSciNet  MATH  Google Scholar 

  • Yu D, Hou J, Liu G, Liu B, Xu L (2010) Acyclic edge coloring of planar graphs with large girth. Theor Comput Sci 410:5196–5200

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifan Wang.

Additional information

Dedicated to Professor Gerard J. Chang on the occasion of his 60th birthday.

Research supported partially by NSFC (No. 11071223, No. 61170302), ZJNSF (No. Z6090150), ZSDZZZZXK08 and IP-OCNS-ZJNU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Shu, Q. & Wang, Y. Acyclic edge coloring of planar graphs without 4-cycles. J Comb Optim 25, 562–586 (2013). https://doi.org/10.1007/s10878-012-9474-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-012-9474-y

Keywords

Navigation