[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The nearest neighbor Spearman footrule distance for bucket, interval, and partial orders

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Comparing and ranking information is an important topic in social and information sciences, and in particular on the web. Its objective is to measure the difference of the preferences of voters on a set of candidates and to compute a consensus ranking. Commonly, each voter provides a total order of all candidates. Recently, this approach was generalized to bucket orders, which allow ties.

In this work we further generalize and consider total, bucket, interval and partial orders. The disagreement between two orders is measured by the nearest neighbor Spearman footrule distance, which has not been studied so far. For two bucket orders and for a total and an interval order the nearest neighbor Spearman footrule distance is shown to be computable in linear time, whereas for a total and a partial order the computation is NP-hard, 4-approximable and fixed-parameter tractable.

Moreover, in contrast to the well-known efficient solution of the rank aggregation problem for total orders, we prove the NP-completeness for bucket orders and establish a 4-approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ailon N (2010) Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica 57(2):284–300

    Article  MathSciNet  MATH  Google Scholar 

  • Aslam JA, Montague MH (2001) Models for metasearch. In: Proc of the 24th annual international ACM SIGIR conference on research and development in information retrieval (SIGIR). ACM Press, New York, pp 275–284

    Google Scholar 

  • Bartholdi JJ III, Tovey CA, Trick MA (1989) Voting schemes for which it can be difficult to tell who won the election. Soc Choice Welf 6(2):157–165

    Article  MathSciNet  MATH  Google Scholar 

  • Bessy S, Fomin FV, Gaspers S, Paul C, Perez A, Saurabh S, Thomassé S (2011) Kernels for feedback arc set in tournaments. J Comput Syst Sci 77(6):1071–1078

    Article  MATH  Google Scholar 

  • Betzler N, Dorn B (2010) Towards a dichotomy for the possible winner problem in elections based on scoring rules. J Comput Syst Sci 76(8):812–836

    Article  MathSciNet  MATH  Google Scholar 

  • Biedl T, Brandenburg FJ, Deng X (2009) On the complexity of crossings in permutations. Discrete Math 309(7):1813–1823

    Article  MathSciNet  MATH  Google Scholar 

  • Borda JC (1781) Mémoire aux les élections au scrutin

  • Brandenburg FJ, Gleißner A, Hofmeier A (2011) The nearest neighbor Spearman footrule distance for bucket, interval, and partial orders. In: Proc of the 5th international frontiers of algorithmics workshop and the 7th international conference on algorithmic aspects of information and management (FAW-AAIM). LNCS, vol 6681. Springer, Berlin, pp 352–363

    Chapter  Google Scholar 

  • Brandenburg FJ, Gleißner A, Hofmeier A (2012) Comparing and aggregating partial orders with Kendall tau distances. In: Proc of the 6th international workshop on algorithms and computation (WALCOM). LNCS. Springer, Berlin

    Google Scholar 

  • Cohen WW, Schapire RE, Singer Y (1999) Learning to order things. J Artif Intell Res 10:243–270

    MathSciNet  MATH  Google Scholar 

  • Condorcet MJ (1785) Éssai sur l’application de l’analyse à la probalité des décisions rendues à la pluralité des voix

  • Critchlow DE (1985) Metric methods for analyzing partially ranked data. In: Lecture Notes in Statistics, vol 34. Springer, Berlin

    Google Scholar 

  • Diaconis P, Graham RL (1977) Spearman’s footrule as a measure of disarray. J R Stat Soc B 39:262–268

    MathSciNet  MATH  Google Scholar 

  • Dom M, Guo J, Hüffner F, Niedermeier R, TrußA (2010) Fixed-parameter tractability results for feedback set problems in tournaments. J Discrete Algorithms 8(1):76–86

    Article  MathSciNet  MATH  Google Scholar 

  • Downey RG, Fellows MR (1999) Parameterized complexity. Monographs in computer science. Springer, Berlin

    Book  Google Scholar 

  • Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the web. In: Proc of the 10th international world wide web conference (WWW), pp 613–622

    Google Scholar 

  • Fagin R, Kumar R, Sivakumar D (2003) Comparing top k lists. SIAM J Discrete Math 17(1):134–160

    Article  MathSciNet  MATH  Google Scholar 

  • Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E (2006) Comparing partial rankings. SIAM J Discrete Math 20(3):628–648

    Article  MathSciNet  MATH  Google Scholar 

  • Garey MR, Johnson DS (1990) Computers and intractability: a guide to the theory of NP-completeness. W.H. Freeman, New York

    Google Scholar 

  • Hausdorff F (1978) Set theory (reprint). Chelsea, New York

    Google Scholar 

  • Hemaspaandra E, Hemaspaandra LA, Rothe J (1997) Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. J ACM 44(6):806–825

    Article  MathSciNet  MATH  Google Scholar 

  • Lebanon G, Lafferty JD (2002) Cranking: combining rankings using conditional probability models on permutations. In: Proc of the 19th international conference on machine learning (ICML). Morgan Kaufmann, San Mateo, pp 363–370

    Google Scholar 

  • Lullus R (1283) Artifitium electionis personarum

    Google Scholar 

  • Montague MH, Aslam JA (2002) Condorcet fusion for improved retrieval. In: Proc of the 2002 ACM international conference on information and knowledge management (CIKM). ACM Press, New York, pp 538–548

    Google Scholar 

  • Niedermeier R (2006) Invitation to fixed-parameter algorithms. Oxford University Press, London

    Book  MATH  Google Scholar 

  • Renda ME, Straccia U (2003) Web metasearch: rank vs. score based rank aggregation methods. In: Proc of the 2003 ACM symposium on applied computing (SAC). ACM Press, New York, pp 841–846

    Chapter  Google Scholar 

  • Sese J, Morishita S (2001) Rank aggregation method for biological databases. Genome Inform 12:506–507

    Google Scholar 

  • Xia L, Conitzer V (2008) Determining possible and necessary winners under common voting rules given partial orders. In: Proc of the 23rd AAAI conference on artificial intelligence (AAAI). AAAI Press, Menlo Park, pp 196–201

    Google Scholar 

  • Yager RR, Kreinovich V (1999) On how to merge sorted lists coming from different web search tools. Soft Comput 3(2):83–88

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Gleißner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandenburg, F.J., Gleißner, A. & Hofmeier, A. The nearest neighbor Spearman footrule distance for bucket, interval, and partial orders. J Comb Optim 26, 310–332 (2013). https://doi.org/10.1007/s10878-012-9467-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-012-9467-x

Keywords

Navigation