[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A rooted-forest partition with uniform vertex demand

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

A rooted-forest is the union of vertex-disjoint rooted-trees. Suppose we are given a graph G=(V,E), a collection {R 1,…,R k } of k root-sets (i.e., vertex-sets), and a positive integer d. We prove a necessary and sufficient condition for G to contain k edge-disjoint rooted-forests F 1,…,F k with root-sets R 1,…,R k such that each vertex is spanned by exactly d of F 1,…,F k .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bérczi K, Frank A (2009) Packing arborescences. Technical Report 2009-04, EGRES

  • Berg A, Jordán T (2003) Algorithms for graph rigidity and scene analysis. In: Proceedings of the 11th annual European symposium on algorithms (ESA). Lecture notes in computer science, vol 2832. Springer, Berlin, pp 78–89

    Google Scholar 

  • Crapo H (1990) On the generic rigidity of plane frameworks. Technical report, Institut National de Recherche en Informatique et en Automatique

  • Edmonds J (1970) Submodular functions, matroids, and certain polyhedra. In: Guy R, Hanani H, Sauer N, Schönheim J (eds) Combinatorial structures and their applications. Gordon and Breach, New York, pp 69–87

    Google Scholar 

  • Edmonds J (1973) Edge disjoint branchings. In: Rustin B (ed) Combinatorial algorithms. Algorithmics Press, New York, pp 91–96

    Google Scholar 

  • Fekete Z, Szegö L (2004) A note on [k,l]-sparse graphs. In: Graph theory in Paris; a conference in memory of Claude Berge, pp 169–177

    Google Scholar 

  • Frank A, Szegö L (2003) Constructive characterizations for packing and covering with trees. Discrete Appl Math 131(2):347–371

    Article  MathSciNet  MATH  Google Scholar 

  • Fujishige S (2010) A note on disjoint arborescences. Combinatorica. doi:10.1007/s00493-010-2518-y

    MathSciNet  Google Scholar 

  • Gabow H, Tarjan R (1988) A linear-time algorithm for finding a minimum spanning pseudoforest. Inform Process Lett 27(5):259–263

    Article  MathSciNet  MATH  Google Scholar 

  • Gabow H, Westermann H (1992) Forests, frames, and games: algorithms for matroid sums and applications. Algorithmica 7(1):465–497

    Article  MathSciNet  MATH  Google Scholar 

  • Haas R (2002) Characterizations of arboricity of graphs. Ars Combin 63:129–138

    MathSciNet  MATH  Google Scholar 

  • Hakimi S (1965) On the degrees of the vertices of a directed graph. J Franklin Inst 279(4):290–308

    Article  MathSciNet  MATH  Google Scholar 

  • Haller K, Lee A, Sitharam M, Streinu I, White N (2009) Body-and-cad geometric constraint systems. In: Proceedings of the 25th ACM symposium on applied computing. ACM, New York, pp 1127–1131

    Chapter  Google Scholar 

  • Imai H (1983) Network flow algorithms for lower truncated transversal polymatroids. J Oper Res Soc Japan 26(3):186–210

    MathSciNet  MATH  Google Scholar 

  • Jackson B, Jordán T (2009) Graph theoretic techniques in the analysis of uniquely localizable sensor networks. In: Mao G, Fidan B (eds) Localization algorithms and strategies for wireless sensor networks. IGI Global, Hershey, pp 146–173

    Chapter  Google Scholar 

  • Kamiyama N, Katoh N, Takizawa A (2009) Arc-disjoint in-trees in directed graphs. Combinatorica 29(2):197–214

    MathSciNet  MATH  Google Scholar 

  • Katoh N, Tanigawa S (2009) On the infinitesimal rigidity of bar-and-slider frameworks. In: Proceedings of the 20th international symposium on algorithms and computation (ISAAC 2009). Lecture notes in computer science, vol 5878. Springer, Berlin, pp 524–533

    Google Scholar 

  • Laman G (1970) On graphs and rigidity of plane skeletal structures. J Eng Math 4(4):331–340

    Article  MathSciNet  MATH  Google Scholar 

  • Lee A, Streinu I (2008) Pebble game algorithms and sparse graphs. Discrete Math 308(8):1425–1437

    Article  MathSciNet  MATH  Google Scholar 

  • Nash-Williams C (1961) Edge-disjoint spanning trees of finite graphs. J Lond Math Soc 1(1):445–450

    Article  MathSciNet  Google Scholar 

  • Oxley J (1992) Matroid Theory. Oxford University Press, London

    MATH  Google Scholar 

  • Pym J, Perfect H (1970) Submodular functions and independence structures. J Math Anal Appl 30(1–31):33

    MathSciNet  Google Scholar 

  • Recski A (1988) Network theory approach to the rigidity of skeletal structures. Part ii. Laman’s theorem and topological formulae. Discrete Appl Math 8(1):63–68

    Article  MathSciNet  Google Scholar 

  • Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Springer, Berlin

    MATH  Google Scholar 

  • Streinu I, Theran L (2009) Sparsity-certifying graph decompositions. Graphs Combin 25(2):219–238

    Article  MathSciNet  MATH  Google Scholar 

  • Sugihara K (1985) Detection of structural inconsistency in systems of equations with degrees of freedom and its applications. Discrete Appl Math 10(3):297–312

    Article  MathSciNet  MATH  Google Scholar 

  • Tay T (1984) Rigidity of multi-graphs. I: Linking rigid bodies in n-space. J Combin Theory Ser B 36(1):95–112

    Article  MathSciNet  MATH  Google Scholar 

  • Tay T (1989) Linking (n−2)-dimensional panels in n-space II: (n−2,2)-frameworks and body and hinge structures. Graphs Combin 5(1):245–273

    Article  MathSciNet  MATH  Google Scholar 

  • Tay T (1993) A new proof of Laman’s theorem. Graphs Combin 9(2):365–370

    Article  MathSciNet  MATH  Google Scholar 

  • Tutte WT (1961) On the problem of decomposing a graph into n connected factors. J Lond Math Soc 36:221–230

    Article  MathSciNet  MATH  Google Scholar 

  • Whiteley W (1988) The union of matroids and the rigidity of frameworks. SIAM J Discrete Math 1(2):237–255

    Article  MathSciNet  MATH  Google Scholar 

  • Whiteley W (2005) Counting out to the flexibility of molecules. Phys Biol 2:S116–S126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Tanigawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katoh, N., Tanigawa, Si. A rooted-forest partition with uniform vertex demand. J Comb Optim 24, 67–98 (2012). https://doi.org/10.1007/s10878-010-9367-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-010-9367-x

Keywords

Navigation