[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Knowledge Extraction from Aerodynamic Design Data and its Application to 3D Turbine Blade Geometries

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

Applying numerical optimisation methods in the field of aerodynamic design optimisation normally leads to a huge amount of heterogeneous design data. While most often only the most promising results are investigated and used to drive further optimisations, general methods for investigating the entire design dataset are rare. We propose methods that allow the extraction of comprehensible knowledge from aerodynamic design data represented by discrete unstructured surface meshes. The knowledge is prepared in a way that is usable for guiding further computational as well as manual design and optimisation processes. A displacement measure is suggested in order to investigate local differences between designs. This measure provides information on the amount and direction of surface modifications. Using the displacement data in conjunction with statistical methods or data mining techniques provides meaningful knowledge from the dataset at hand. The theoretical concepts have been applied to a data set of 3D turbine stator blade geometries. The results have been verified by means of modifying the turbine blade geometry using direct manipulation of free form deformation (DMFFD) techniques. The performance of the deformed blade design has been calculated by running computational fluid dynamic (CFD) simulations. It is shown that the suggested framework provides reasonable results which can directly be transformed into design modifications in order to guide the design process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexa, M.: Recent advances in mesh morphing. Comput. Graph. Forum 21(2), 173–197 (2002)

    Article  Google Scholar 

  2. Arima, T., Sonoda, T., Shirotori, M., Tamura, A., Kikuchi, K.: A numerical investigation of transonic axial compressor rotor flow using a Low-Reynolds-Number k − ε turbulence model. ASME J. Turbomach. 121(1), 44–58 (1999)

    Article  Google Scholar 

  3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)

    MATH  Google Scholar 

  4. Chiba, K., Jeong, S., Obayashi, S., Morino, H.: Data mining for multidisciplinary design space of regional-jet wing. IEEE Congr. Evol. Comput. 3, 2333–2340 (2005)

    Article  Google Scholar 

  5. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence Erlbaum, Hillsdale (1988)

    MATH  Google Scholar 

  6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunication. Wiley, New York (1991)

    MATH  Google Scholar 

  7. Garland, M., Heckbert, P.S.: Surface simplification using quadratic error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216. ACM, New York (1997)

    Chapter  Google Scholar 

  8. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolutionary strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  9. Hasenjäger, M., Sendhoff, B., Sonoda, T., Arima, T.: Three dimensional aerodynamic optimization for an ultra-low aspect ratio transonic turbine stator blade. In: Proceedings of the ASME Turbo Expo, ASME Paper No. GT2005-68680. ASME, New York (2005)

  10. Hasenjäger, M., Sendhoff, B., Sonoda, T., Arima, T.: Three dimensional evolutionary aerodynamic design optimisation using single and multi-objective approaches. In: Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems. EUROGEN, Munich (2005)

  11. Hastie, T., Tibshirani, R., Walther, G.: Estimating the number of clusters in a dataset via the gap statistic. Tech. Rep., Dept. of Statistics, Stanford University (2000)

  12. Hill, T., Lewicki, P.: STATISTICS Methods and Applications. StatSoft, Tulsa (2007)

    Google Scholar 

  13. Hsu, W.M., Hughes, J.F., Kaufman, H.: Direct manipulation of free-form deformations, international conference on computer graphics and interactive techniques. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 177–184, July 1992

  14. Ito, Y., Nakahashi, K.: Surface triangulation for polygonal models based on CAD data. Int. J. Numer. Methods Fluids, 39(1), 75–96 (2002)

    Article  MATH  Google Scholar 

  15. Jain, V., Zhang, H.: Robust 3D shape correspondence in the spectral domain. In: IEEE Intern. Conf. on Shape Modeling and Applications, SMI’06, pp. 118–129, Matsushima, 14–16 June 2006

  16. Jin, Y.: a comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)

    Article  Google Scholar 

  17. Jin, Y.: Knowledge Incorporation in Evolutionary Computation. Springer, Berlin (2005)

    MATH  Google Scholar 

  18. Keane, A.J., Nair, P.B.: Computational Approach for Aerospace Design. Wiley, New York (2005)

    Google Scholar 

  19. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)

    Google Scholar 

  20. Kuno, N., Sonoda, T.: Flow characteristics in a transonic Ultra-Low-Aspect-Ratio axial turbine Van. J. Propuls. Power 20(4), 596–603 (2004)

    Article  Google Scholar 

  21. Larranaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  22. Laskov, P., Kambhamettu, C.: Comparison of 3D algorithms for non-rigid motion and correspondence estimation. In: Proceedings of the British Machine Vision Conference, BMVC 2001, Manchester, UK, 2001

  23. Lloyed, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  Google Scholar 

  24. Maimon, O., Rokach, L. (eds.): The Data Mining and Knowledge Discovery Handbook. Springer, Berlin (2005)

    Google Scholar 

  25. Menzel, S., Olhofer, M., Sendhoff, B.: Direct manipulation of free form deformation in evolutionary design optimisation. In: Runarsson, T.P., et al. (eds.) International Conference on Parallel Problem Solving from Nature, PPSN, pp. 352–361. Springer, Berlin (2006)

    Chapter  Google Scholar 

  26. Menzel, S., Sendhoff, B.: Representing the change—Free form deformation for evolutionary design optimisation. In: Yu, T., Davis, D., Baydar, C., Roy, R. (eds.) Evolutionary Computation in Practice. Springer, Berlin (2008)

    Google Scholar 

  27. Meyers, R.H., Montgomery, D.C.: Response Surface Methodology. Wiley, New York (1995)

    Google Scholar 

  28. Obayashi, S., Sasaki, D.: Visualization and data mining of pareto solutions using self-organizing map. In: Proc. Second Intern. Conf. on Evolutionary Multi-Criterion Optimization, EMO 2003, vol. 2632/2003, p. 71, Faro, Portugal, 2003

  29. Samareh, J.: A survey of shape parametrization techniques. In: Intern. Forum on Aeroelasticity and Structural Dynamics Conf. (1999)

  30. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: SIGGRAPH ’86: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 151–160, 1986

  31. Shewchuk, J.R.: Delaunay refinement mesh generation. Ph.D. thesis, Carnegie-Mellon Univ., School of Computer Science (1997)

  32. Shimada, K.: Anisotropic triangular meshing of parametric surfaces via close packing of ellipsoidal bubbles. Int. J. Comput. Geom. Appl. 10(4), 400–424 (2000)

    Article  MathSciNet  Google Scholar 

  33. Wang, Y., Peterson, B.S., Staib, L.H.: Shape-based 3D surface correspondence using geodesic and local geometry. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 644–651. IEEE, Piscataway (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Graening.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graening, L., Menzel, S., Hasenjäger, M. et al. Knowledge Extraction from Aerodynamic Design Data and its Application to 3D Turbine Blade Geometries. J Math Model Algor 7, 329–350 (2008). https://doi.org/10.1007/s10852-008-9094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-008-9094-9

Keywords

Navigation