[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Probabilistic Approach to Restore Images Acquired in Underwater Scenes

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Modern imaging devices can capture faithful color and characteristics of natural and man-made scenes. However, there exist conditions in which the light radiated by objects cannot reach the camera’s lens or it is naturally degraded. Thus, the resulting captured images suffer from color loss. This article addresses the problem of underwater image restoration by using an optics-based formulation to model the interaction between light and any underwater suspended particle. Our approach uses a factorial Markov random field (FMRF) to reformulate and solve the general nonlinear participating media optical model. This novel formulation also has the particularity of considering attenuation coefficients, beside global light, as to probabilistic latent variables, inferred from a single image. Due to this unique feature, our FMRF methodology for itself is enough to deal with images acquired in underwater scenes. The generality of our optical model makes it applicable in other participating media such as fog or haze, more commonly addressed in the current literature. Results have shown the capabilities to improve the degraded images using our methodology in several scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ancuti, C., Ancuti, C.O., Haber, T., Bekaert, P.: Enhancing underwater images and videos by fusion. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 81–88. IEEE (2012)

  2. Botelho, S., Drews-Jr, P., Oliveira, G., Figueiredo, M.: Visual odometry and mapping for underwater autonomous vehicles. In: IEEE LARS, pp. 1–6 (2009). https://doi.org/10.1109/LARS.2009.5418320

  3. Boyat, A.K., Joshi, B.K.: A review paper: noise models in digital image processing. arXiv preprint arXiv:1505.03489 (2015)

  4. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MathSciNet  Google Scholar 

  5. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  6. Campos, R., Garcia, R., Alliez, P., Yvinec, M.: A surface reconstruction method for in-detail underwater 3D optical mapping. Int. J. Robot. Res. 34(1), 64–89 (2015)

    Article  Google Scholar 

  7. Carlevaris-Bianco, N., Mohan, A., Eustice, R.M.: Initial results in underwater single image dehazing. In: OCEANS 2010 MTS/IEEE SEATTLE, pp. 1–8. IEEE (2010)

  8. Chiang, J., Chen, Y.: Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 21(4), 1756–1769 (2012)

    Article  MathSciNet  Google Scholar 

  9. Codevilla, F., Botelho, S., Drews-Jr, P., Filho, N.D., Gaya, J.: Underwater single image restoration using dark channel prior. In: Symposium on Computing and Automation for Offshore Shipbuilding (NAVCOMP) (2014)

  10. Codevilla, F., Botelho, S., Duarte, N., Purkis, S., Shihavuddin, A., Garcia, R., Gracias, N.: Geostatistics for context-aware image classification. In: L. Nalpantidis, V. Krüger, J.O. Eklundh, A. Gasteratos (eds.) Computer Vision Systems, LNCS, vol. 9163, pp. 228–239. Springer (2015)

  11. Codevilla, F.M., Botelho, S.S.C., Drews-Jr, P., Duarte Filho, N., Gaya, J.O.: Underwater single image restoration using dark channel prior. In: Symposium on Automation and Computation for Naval, Offshore and Subsea (NAVCOMP), pp. 18–21. IEEE (2014)

  12. Concha, A., Drews-Jr, P., Campos, M., Civera, J.: Real-time localization and dense mapping in underwater environments from a monocular sequence. In: IEEE/OES Oceans (2015)

  13. Drews-Jr, P., Hernández, E., Elfes, A., Nascimento, E.R., Campos, M.: Real-time monocular obstacle avoidance using underwater dark channel prior. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4672–4677 (2016). https://doi.org/10.1109/IROS.2016.7759687

  14. Drews-Jr, P., Nascimento, E.R., Botelho, S., Campos, M.: Underwater depth estimation and image restoration based on single images. IEEE Comput. Gr. Appl. 36(2), 24–35 (2016). https://doi.org/10.1109/MCG.2016.26

    Article  Google Scholar 

  15. Drews-Jr, P., Nascimento, E.R., Campos, M.F.M., Elfes, A.: Automatic restoration of underwater monocular sequences of images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1058–1064 (2015). https://doi.org/10.1109/IROS.2015.7353501

  16. Drews-Jr, P., Nascimento, E.R., Moraes, F., Botelho, S., Campos, M.: Transmission estimation in underwater single images. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 825–830 (2013). https://doi.org/10.1109/ICCVW.2013.113

  17. Drews-Jr, P., Nascimento, E.R., Xavier, A., Campos, M.: Generalized optical flow model for scattering media. In: IEEE International Conference on Pattern Recognition (ICPR), pp. 3999–4004 (2014)

  18. Drews-Jr, P.L.J.: Contributions to the automatic restoration of images from scenes in participating media. Ph.D. thesis, Universidade Federal de Minas Gerais (UFMG) (2016)

  19. Emberton, S., Chittka, L., Cavallaro, A.: Hierarchical rank-based veiling light estimation for underwater dehazing. In: British Machine Vision Conf.(BMVC), pp. 125–1 (2015)

  20. Fattal, R.: Single image dehazing. ACM Trans. Gr. 27(3), 72 (2008)

    Article  Google Scholar 

  21. Fattal, R.: Dehazing using color-lines. ACM Trans. Gr. 34(13), 10369 (2014)

    Google Scholar 

  22. Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: Color and Imaging Conference, 1, pp. 37–41. Society for Imaging Science and Technology (2004)

  23. Freepik: Sea life illustration. http://www.freepik.com (2016)

  24. Galdran, A., Pardo, D., Picón, A., Alvarez-Gila, A.: Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 26, 132–145 (2015)

    Article  Google Scholar 

  25. Gaya, J.O., Codevilla, F., Duarte, A.C., Drews-Jr, P., Botelho, S.S.: Single image restoration for participating media based on prior fusion. IEEE Comput. Gr. Appl. 39(1), 71–83 (2019)

    Article  Google Scholar 

  26. Gibson, K.B., Vo, D.T., Nguyen, T.Q.: An investigation of dehazing effects on image and video coding. IEEE Trans. Image Process. 21(2), 662–673 (2012)

    Article  MathSciNet  Google Scholar 

  27. Hautiere, N., Tarel, J.P., Aubert, D., Dumont, E., et al.: Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal. Stereol. J. 27(2), 87–95 (2008)

    Article  MathSciNet  Google Scholar 

  28. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2009)

  29. Hover, F., Eustice, R., Kim, A., Englot, B., Johannsson, H., Kaess, M., Leonard, J.: Advanced perception, navigation and planning for autonomous in-water ship hull inspection. IJRR 31(12), 1445–1464 (2012)

    Google Scholar 

  30. J. Floor, A.: The plankton balance hypothesis two opposing forces in the plankton soup nurture and kill. www.seafriends.org.nz/enviro/plankton/balance.htm (2003). Accessed 03 Mar 2018

  31. Jaffe, J.S.: Computer modeling and the design of optimal underwater imaging systems. IEEE J. Oceanic Eng. 15(2), 101–111 (1990). https://doi.org/10.1109/48.50695

    Article  Google Scholar 

  32. Jerlov, N.G.: Optical Oceanography. Elsevier, Amsterdam (1968)

    Google Scholar 

  33. Kim, J., Zabih, R.: Factorial Markov random fields. In: European Conference on Computer Vision, pp. 321–334. Springer (2002)

  34. Kim, J.H., Jang, W.D., Sim, J.Y., Kim, C.S.: Optimized contrast enhancement for real-time image and video dehazing. J. Vis. Commun. Image Represent. 24(3), 410–425 (2013)

    Article  Google Scholar 

  35. Kratz, L., Nishino, K.: Factorizing scene albedo and depth from a single foggy image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1701–1708 (2009). https://doi.org/10.1109/ICCV.2009.5459382

  36. Maire, F., Prasser, D., Dunbabin, M., Dawson, M.: A vision based target detection system for docking of an autonomous underwater vehicle. In: ACRA, pp. 1–7 (2009)

  37. McGlamery, B.: A computer model for underwater camera systems. In: Ocean Optics VI, pp. 221–231. International Society for Optics and Photonics (1980)

  38. Mobley, C.D., Gentili, B., Gordon, H.R., Jin, Z., Kattawar, G.W., Morel, A., Reinersman, P., Stamnes, K., Stavn, R.H.: Comparison of numerical models for computing underwater light fields. Appl. Opt. 32(36), 7484–7504 (1993). https://doi.org/10.1364/AO.32.007484

    Article  Google Scholar 

  39. Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. Int. J. Comput. Vis. 98(3), 263–278 (2012)

    Article  MathSciNet  Google Scholar 

  40. Oakley, J.P., Satherley, B.L.: Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Trans. Image Process. 7(2), 167–179 (1998). https://doi.org/10.1109/83.660994

    Article  Google Scholar 

  41. Ponce-Hinestroza, A.N., Torres-Méndez, L.A., Drews, P.: A statistical learning approach for underwater color restoration with adaptive training based on visual attention. In: MTS/IEEE OCEANS 2016 Monterey, pp. 1–6. IEEE (2016)

  42. Ponce-Hinestroza, A.N., Torres-Méndez, L.A., Drews-Jr, P.: Using a MRF-BP model with color adaptive training for underwater color restoration. In: IEEE International Conference on Pattern Recognition (ICPR), pp. 1–6. IEEE (2016)

  43. Roser, M., Dunbabin, M., Geiger, A.: Simultaneous underwater visibility assessment, enhancement and improved stereo. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3840–3847 (2014). https://doi.org/10.1109/ICRA.2014.6907416

  44. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

  45. Schechner, Y.Y., Karpel, N.: Clear underwater vision. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. I–536 (2004)

  46. Schwartz, G., Nishino, K.: An implementation of Bayesian defogging (2013)

  47. Sharma, G., Wu, W., Dalal, E.N.: The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application: Endorsed by Inter-Society Color Council, The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour Society of Australia, Centre Français de la Couleur 30(1), 21–30 (2005)

  48. Tan, R.T.: Visibility in bad weather from a single image. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2008)

  49. Trucco, E., Olmos-Antillon, A.T.: Self-tuning underwater image restoration. IEEE J. Oceanic Eng. 31(2), 511–519 (2006). https://doi.org/10.1109/JOE.2004.836395

    Article  Google Scholar 

  50. Voss, K.J.: Simple empirical model of the oceanic point spread function. Appl. Opt. 30(18), 2647–2651 (1991)

    Article  Google Scholar 

  51. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  52. Zhang, S., Negahdaripour, S.: 3-d shape recovery of planar and curved surfaces from shading cues in underwater images. IEEE J. Ocean Eng. 27(1), 100–116 (2002). https://doi.org/10.1109/48.989895

    Article  Google Scholar 

  53. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015). https://doi.org/10.1109/TIP.2015.2446191

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partly supported by CONACyT [CB-2013-220540].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Abril Torres-Méndez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponce-Hinestroza, AN., Drews-Jr, P.L.J. & Torres-Méndez, L.A. A Probabilistic Approach to Restore Images Acquired in Underwater Scenes. J Math Imaging Vis 64, 89–104 (2022). https://doi.org/10.1007/s10851-021-01061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-021-01061-z

Keywords

Navigation