[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

New Set of Non-separable Orthogonal Invariant Moments for Image Recognition

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

It is known that the rotation, scaling and translation invariant property of image moments has a high significance in image recognition. For this reason, the seven invariant moments presented by Hu are widely used in the field of image analysis. These moments are of finite order; therefore, they do not comprise a complete set of image descriptors. For this reason, we introduce in this paper another series of invariant moments of infinite order, which are based on normalized central moments. The non-orthogonal property of these moments causes the redundancy of information. To overcome this problem, we propose a new construction technique of non-separable orthogonal polynomials in two variables based on a recurrence formula and we present a new set of orthogonal moments, which are invariant to translation, scaling and rotation. The presented approaches are tested in several well-known computer vision datasets including moment’s invariability, image retrieval and classification of objects, this latter based on fuzzy K-means clustering algorithm. The performance of these invariant moments for classification and image retrieval is compared with some recent invariant moments such as invariants of multi-channel orthogonal radial-substituted Chebyshev moments, invariants of quaternion radial-substituted Chebyshev moments, invariants of rotational moments in Radon space and Legendre–Fourier moments in Radon space. The experimental results made using four databases of images, namely Columbia Object Image Library (COIL-20) database, MPEG7-CE shape database, COIL-100 database and ORL database, show that our orthogonal invariant moments have done better than the other descriptors tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory 8(2), 179–187 (1962)

    Article  Google Scholar 

  2. Khotanzad, A., Hong, Y.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489–497 (1990)

    Article  Google Scholar 

  3. Liao, X., Pawlak, M.: On image analysis by moments. IEEE Trans. Pattern Anal. Mach. Intell. 18(3), 254–266 (1996)

    Article  Google Scholar 

  4. Asano, T., Yokoya, N.: Image segmentation schema for low-level computer vision. Pattern Recogn. 14(3), 267–273 (1981)

    Article  Google Scholar 

  5. Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, pp. 235–276. World Scientific Publishing, Singapore (1993)

    Chapter  Google Scholar 

  6. Srivastava, P., Binh, N.T., Khare, A.: Content-based image retrieval using moments of local ternary pattern. Mob. Netw. Appl. 19(5), 618–625 (2014)

    Article  Google Scholar 

  7. Hosny, K.M., Darwish, M.M.: New set of multi-channel orthogonal moments for color image representation and recognition. Pattern Recognit. 88, 153–173 (2019)

    Article  Google Scholar 

  8. Hosny, K.M., Darwish, M.M.: New set of quaternion moments for color images representation and recognition. J. Math. Imaging Vis. 60(5), 717–736 (2018)

    Article  MathSciNet  Google Scholar 

  9. Hosny, K.M., Darwish, M.M.: Invariant color images representation using accurate quaternion Legendre Fourier moments. Pattern Anal. Appl. 22, 1105–1122 (2018)

    Article  MathSciNet  Google Scholar 

  10. Hosny, K.M., Darwish, M.M.: Robust color image watermarking using invariant quaternion Legendre-Fourier moments. Multimed Tools Appl. 77(19), 24727–24750 (2018)

    Article  Google Scholar 

  11. Xiao, B., Cui, J., Qin, H., Li, W., Wang, G.: Moments and moment invariants in the Radon space. Pattern Recognit. 48(9), 2772–2784 (2015)

    Article  Google Scholar 

  12. Xiao, B., Li, L., Li, Y., Li, W., Wang, G.: Image analysis by fractional-order orthogonal moments. Inf. Sci. 382-383, 135–149 (2017)

    Article  Google Scholar 

  13. Chen, B., Yu, M., Su, Q.: Fractional quaternion Zernike moments for robust color image copy–move forgery detection. IEEE Access 6, 56637–56646 (2018)

    Article  Google Scholar 

  14. Xiao, B., Wang, G., Li, W.: Radial shifted Legendre moments for image analysis and invariant image recognition. Image Vis. Comput. 32(12), 994–1006 (2014)

    Article  Google Scholar 

  15. Belkasim, S.O., Shridhar, M., Ahmadi, M.: Pattern recognition with moment invariants: a comparative study and new results. Pattern Recognit. 24(12), 1117–1138 (1991)

    Article  Google Scholar 

  16. Flusser, J., Suk, T.: A moment-based approach to registration of images with affine geometric distortion. IEEE Trans. Geosci. Remote Sens. 32(2), 382–387 (1994)

    Article  Google Scholar 

  17. El-Khaly, F., SidAhmed, M.A.: Machine recognition of optically captured machine printed Arabic text. Pattern Recognit. 23(11), 1207–1214 (1990)

    Article  Google Scholar 

  18. Tsirikolias, K., Mertzios, B.G.: Statistical pattern recognition using efficient two-dimensional moments with applications to character recognition. Pattern Recogn. 26(6), 877–882 (1993)

    Article  Google Scholar 

  19. Flusser, J., Suk, T.: Affine moment invariants: a new tool for character recognition. Pattern Recognit. Lett. 15(4), 433–436 (1994)

    Article  Google Scholar 

  20. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well separated clusters. J. Cybern. 3(3), 32–57 (1974)

    Article  MathSciNet  Google Scholar 

  21. http://www.dabi.temple.edu/shape/mpeg7/dataset.html

  22. http://www.cs.columbia.edu/cave/software/softlib/coil-20.php

  23. http://www.cs.columbia.edu/cave/software/softlib/coil-100.php

  24. http://www.cl.cam.ac.uk/research/dtg/attarchive:pub/data/att-faces.tar.z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Hjouji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hjouji, A., EL-Mekkaoui, J., Jourhmane, M. et al. New Set of Non-separable Orthogonal Invariant Moments for Image Recognition. J Math Imaging Vis 62, 606–624 (2020). https://doi.org/10.1007/s10851-020-00948-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-020-00948-7

Keywords

Navigation