[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Critical Loci for Two Views Reconstruction as Quadratic Transformations Between Images

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, the effect of the existence of a critical set for the projective reconstruction of a scene in \({{\mathbb {P}}}^{3}\) from two views is analyzed directly on the image planes. Corresponding points, which are images of critical points, are linked by a birational map between the two planes which is a quadratic transformation. This transformation is explicitly described and used to investigate the instability phenomena for reconstruction with a new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beltrametti, M., Carletti, E., Gallarati, D.: Lectures on Curves. Surfaces and Projective Varieties: A Classical View of Algebraic Geometry. EMS Textbooks in Mathematics, vol. 9. European Mathematical Society, Zürich (2009)

    Book  Google Scholar 

  2. Bertolini, M., Besana, G.M., Turrini, C.: Instability of projective reconstruction from 1-view near critical configurations in higher dimensions. In: Alberto, C., Juan, M., Claudia, P. (eds.) Algebra Geometry and their Interactions. Contemporary Mathematics, vol. 448, pp. 1–12 (2007)

  3. Bertolini, M., Besana, G.M., Turrini, C.: Instability of projective reconstruction of dynamic scenes near critical configurations. In: Proceedings of the International Conference on Computer Vision, ICCV (2007)

  4. Bertolini, M., Besana, G.M., Turrini, C.: Applications of multiview tensors in higher dimensions. In: Aja-Fernández, S., de Luis Garcia, R., Tao, D., Li, X. (eds.) Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition. Springer, Berlin (2009)

    MATH  Google Scholar 

  5. Bertolini, M., Besana, G.M., Turrini, C.: Critical loci for projective reconstruction from multiple views in higher dimension: a comprehensive theoretical approach. Linear Algebra Appl. 469, 335–363 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bertolini, M., Notari, R., Turrini, C.: The Bordiga surface as critical locus for 3-view reconstructions. J. Symb. Comput. 91, 74–97 (2017). (Special Issue MEGA)

    Article  MathSciNet  Google Scholar 

  7. Bertolini, M., Turrini, C.: Critical configurations for 1-view in projections from \({\mathbb{P}}^{k} \rightarrow {\mathbb{P}}^{2}\). J. Math. Imaging Vis. 27, 277–287 (2007)

    Article  Google Scholar 

  8. Buchanan, T.: The twisted cubic and camera calibration. Comput. Vis. Graph. Image Process. 42, 130–132 (1988)

    Article  MathSciNet  Google Scholar 

  9. Dolgachev, I.V.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139084437

    Book  MATH  Google Scholar 

  10. Faugeras, O.: Three-Dimensional Computer Vision. A Geometric Viewpoint. MIT Press, Cambridge (1993)

    Google Scholar 

  11. Hartley, R., Kahl, F.: Critical configurations for projective reconstruction from multiple views. Int. J. Comput. Vis. 71(1), 5–47 (2007)

    Article  Google Scholar 

  12. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003). (With a foreword by Olivier Faugeras)

    MATH  Google Scholar 

  13. Hudson, H.P.: Cremona Transformation in Plane and Space. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  14. Krames, J.: Zur ermittlung eines objectes aus zwei perspectiven (ein beitrag zur theorie der gefhrlichen rter). Monatsh. Math. Phys. 49, 327–354 (1940)

    Article  Google Scholar 

  15. Maybank, S.: Theory of Reconstruction from Image Motion. Springer, Secaucus (1992)

    MATH  Google Scholar 

  16. Semple, J.G., Kneebone, G.T.: Algebraic Projective Geometry. Oxford University Press, Oxford (1952)

    MATH  Google Scholar 

  17. Sturm, P.: Critical motion sequences for the self-calibration of cameras and stereo systems with variable focal length. Image Vis. Comput. 20, 415–426 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Bertolini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolini, M., Magri, L. & Turrini, C. Critical Loci for Two Views Reconstruction as Quadratic Transformations Between Images. J Math Imaging Vis 61, 1322–1328 (2019). https://doi.org/10.1007/s10851-019-00908-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00908-w

Keywords

Navigation