[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Path-Based Analysis for Structure-Preserving Image Filtering

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Structure-preserving image filtering is an image smoothing technique that aims to preserve prominent structures while removing unwanted details in natural images. However, relevant studies mainly focus on small variances/fluctuations suppression and are vulnerable to separate pixels connected by some low-contrast edges or cluster pixels which exhibit strong differences between neighbors in highly textured region. Inspired by the fact that the human visual system significantly outperforms manually designed operators in extracting meaningful structures from natural scenes, we present an efficient structure-preserving filtering method which integrates similarity, proximity and continuation principles of human perception to accomplish high-contrast details (textures/noises) smoothing. Additionally, a Liebig’s law of minimum-based distance transform is presented to seamlessly incorporate the three properties for the description of the filter kernel. Experiments demonstrate that our distance transform keeps a clustering-like manner of separating different image pixels and grouping similar ones with the awareness of structure. When integrating this affinity measure into the bilateral-filter-like framework, our method can efficiently remove high-contrast textures/noises while preserving major structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.

References

  1. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: IEEE Computer Vision, pp. 839–846 (1998)

  2. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Google Scholar 

  3. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. (TOG) 27(3), 67 (2008)

    Google Scholar 

  4. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization. ACM Trans. Graph. 30(6), 174:1–174:12 (2011)

    Google Scholar 

  5. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation-based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via natural variation measure. ACM Trans. Graph. (SIGGRAPH Asia) 31(6), 1–10 (2012)

    Google Scholar 

  7. He, K., Sun, J., Tang, X.: Guided image filtering. In: ECCV, pp. 1–14 (2010)

    Google Scholar 

  8. Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graph. 28(5), 147:1–147:9 (2009)

    Google Scholar 

  9. Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: ECCV (2014)

    Google Scholar 

  10. Yang, Q.: Semantic filtering. In: CVPR, pp. 4517–4526 (2016)

  11. Bao, L., Song, Y., Yang, Q., Yuan, H., Wang, G.: Tree filtering: efficient structure-preserving smoothing with a minimum spanning tree. IEEE Trans. Image Process. 23(2), 555–569 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Arnheim, R.: Art and Visual Perception: A Psychology of the Creative Eye. University of California Press, Berkeley (1956)

    Google Scholar 

  13. Felsberg, M., Forssén, P., Scharr, H.: Channel smoothing: efficient robust smoothing of low-level signal features. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 209–222 (2006)

    Google Scholar 

  14. Kass, M., Solomon, J.: Smoothed local histogram filters. ACM Trans. Graph. 29(4), 100:1–100:10 (2010)

    Google Scholar 

  15. Karacan, L., Erdem, E., Erdem, A.: Structure-preserving image smoothing via region covariances. ACM Trans. Graph. (TOG) 32(6), 176:1–176:11 (2013)

    Google Scholar 

  16. Criminisi, A., Sharp, T., Rother, C., Perez, P.: Geodesic image and video editing. ACM Trans. Graph. (TOG) 29(5), 134 (2010)

    Google Scholar 

  17. Farbman, Z., Fattal, R., Lischinski, D.: Diffusion maps for edge-aware image editing. ACM Trans. Graph. (TOG) 29(6), 145:1–145:10 (2010)

    Google Scholar 

  18. Wolters, A., Koffka, K.: Principles of Gestalt Psychology, pp. 502–504. Routledge, London (1936)

    Google Scholar 

  19. Desolneux, A., Moisan, L., Morel, J.-M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach. Springer, Berlin (2008)

    MATH  Google Scholar 

  20. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. (TOG) 26(3), 103:1–103:10 (2007)

    Google Scholar 

  21. Porikli, F.: Constant time O(1) bilateral filtering. In: IEEE CVPR, pp. 1–8 (2008)

  22. Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. Int. J. Comput. Vision 81(1), 24–52 (2009)

    Google Scholar 

  23. Yang, Q., Tan, K., Ahuja, N.: Real-time O(1) bilateral filtering. In: IEEE CVPR, pp. 557–564 (2009)

  24. Yang, Q.: Recursive bilateral filtering. In: ECCV, pp. 399–413 (2012)

  25. Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. 28(3), 22:1–22:10 (2009)

    Google Scholar 

  26. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. Comput. Vis. Pattern Recognit. 2, 60–65 (2005)

    MATH  Google Scholar 

  27. Paris, S., Hasinoff, S., Kautz, J.: Local Laplacian filters: edge-aware image processing with a Laplacian pyramid. ACM Trans. Graph. 30(4), 68:1–68:12 (2011)

    Google Scholar 

  28. Gastal, E., Oliveira, M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. 30(4), 69:1–69:12 (2011)

    Google Scholar 

  29. Strand, R., Ciesielski, K., Malmberg, F., Saha, P.: The minimum barrier distance. Comput. Vis. Image Underst. 117(4), 429–437 (2013)

    MATH  Google Scholar 

  30. Ciesielski, K., Strand, R., Malmberg, F., Saha, P.: Efficient algorithm for finding the exact minimum barrier distance. Comput. Vis. Image Underst. 123, 53–64 (2014)

    Google Scholar 

  31. Lezoray, O., Grady, L. (eds.): Image Processing and Analysis with Graphs. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  32. Sanfeliu, A., Alquézar, R., Andrade, J., et al.: Graph-based representations and techniques for image processing and image analysis. Pattern Recognit. 35(3), 639–650 (2002)

    MATH  Google Scholar 

  33. Saha, P., Wehrli, F., Gomberg, B.: Fuzzy distance transform: theory, algorithms, and applications. Comput. Vis. Image Underst. 86(3), 171–190 (2002)

    MATH  Google Scholar 

  34. Udupa, J., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Image Process. 58(3), 246–261 (1996)

    Google Scholar 

  35. Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. J. Math. Imag. Vis. 22(2–3), 231–249 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Falcao, A., Stol, J., Alencar Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE PAMI 26(1), 19 (2004)

    Google Scholar 

  37. Fischer, B., Zöller, T., Buhmann, J. M.: Path based pairwise data clustering with application to texture segmentation. In: Computer Vision and Pattern Recognition, pp. 235–250 (2001)

    Google Scholar 

  38. Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Comput. Graph. Image Process. 10(3), 195–223 (1979)

    Google Scholar 

  39. Gower, J., Ross, G.: Minimum spanning trees and single linkage cluster analysis. Appl. Stat. 18(1), 54–64 (1969)

    MathSciNet  Google Scholar 

  40. Soille, Pierre: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)

    Google Scholar 

  41. Meyer, F., Maragos, P.: Nonlinear scale-space representation with morphological levelings. J. Vis. Commun. Image Represent. 11(3), 245–265 (2000)

    Google Scholar 

  42. Hambrusch, S., He, X., Miller, R.: Parallel algorithms for gray-scale image component labeling on a mesh-connected computer. In: Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 100–108 (1992)

  43. Braga-Neto, U., Goutsias, J.: Grayscale level connectivity: theory and applications. IEEE Trans. Image Process. 13(12), 1567–1580 (2004)

    MathSciNet  Google Scholar 

  44. Liebig, J.: 1840, Salisbury, Plant Physiology, 4th edn. Wadsworth, Belmont (1992)

    Google Scholar 

  45. Najman, L., Cousty, J., Perret, B.: Playing with kruskal: algorithms for morphological trees in edge-weighted graphs. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing. Springer, pp 135–146 (2013)

  46. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)

    Google Scholar 

  47. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)

    Google Scholar 

  48. Danda, S., Challa, A., Daya Sagar, B., Najman, L.: Some theoretical links between shortest path filters and minimum spanning tree filters. J. Math. Imag. Vis. 61(6), 745–762 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Miranda, P.A.V., Falcao, A.X.: Image Segmentation by the Image Foresting Transform. XX Concurso de Teses e Dissertaçoes, pp. 2043–2047 (2007)

  50. Lerallut, R., Decenciere, E., Meyer, F.: Image filtering using morphological amoebas. Image Vis. Comput. 25(4), 395–404 (2007)

    Google Scholar 

  51. Huang, L., Li, L., Tan, Q.: Behavior-based trust in wireless sensor network. In: Asia-Pacific Web Conference. Springer, Berlin, pp. 214–223 (2006)

    Google Scholar 

  52. Yang, Q.: A non-local cost aggregation method for stereo matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1402–1409 (2012)

  53. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. (TOG) 31(6), 139 (2012)

    Google Scholar 

  54. Jiang, H., Wang, J., Yuan, Z., et al.: Salient object detection: a discriminative regional feature integration approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2083–2090 (2013)

  55. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. (TOG) 22(3), 313–318 (2003)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (No.2018YFA0704605), the National Key Project of Science and Technology of China (No.2017ZX05064), National Natural Science Foundation of China (No. 61272523) and China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wang, F., Dempere-Marco, L. et al. Path-Based Analysis for Structure-Preserving Image Filtering. J Math Imaging Vis 62, 253–271 (2020). https://doi.org/10.1007/s10851-019-00941-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00941-9

Keywords

Navigation