Abstract
Structure-preserving image filtering is an image smoothing technique that aims to preserve prominent structures while removing unwanted details in natural images. However, relevant studies mainly focus on small variances/fluctuations suppression and are vulnerable to separate pixels connected by some low-contrast edges or cluster pixels which exhibit strong differences between neighbors in highly textured region. Inspired by the fact that the human visual system significantly outperforms manually designed operators in extracting meaningful structures from natural scenes, we present an efficient structure-preserving filtering method which integrates similarity, proximity and continuation principles of human perception to accomplish high-contrast details (textures/noises) smoothing. Additionally, a Liebig’s law of minimum-based distance transform is presented to seamlessly incorporate the three properties for the description of the filter kernel. Experiments demonstrate that our distance transform keeps a clustering-like manner of separating different image pixels and grouping similar ones with the awareness of structure. When integrating this affinity measure into the bilateral-filter-like framework, our method can efficiently remove high-contrast textures/noises while preserving major structures.
Similar content being viewed by others
References
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: IEEE Computer Vision, pp. 839–846 (1998)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. (TOG) 27(3), 67 (2008)
Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization. ACM Trans. Graph. 30(6), 174:1–174:12 (2011)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation-based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)
Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via natural variation measure. ACM Trans. Graph. (SIGGRAPH Asia) 31(6), 1–10 (2012)
He, K., Sun, J., Tang, X.: Guided image filtering. In: ECCV, pp. 1–14 (2010)
Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graph. 28(5), 147:1–147:9 (2009)
Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: ECCV (2014)
Yang, Q.: Semantic filtering. In: CVPR, pp. 4517–4526 (2016)
Bao, L., Song, Y., Yang, Q., Yuan, H., Wang, G.: Tree filtering: efficient structure-preserving smoothing with a minimum spanning tree. IEEE Trans. Image Process. 23(2), 555–569 (2014)
Arnheim, R.: Art and Visual Perception: A Psychology of the Creative Eye. University of California Press, Berkeley (1956)
Felsberg, M., Forssén, P., Scharr, H.: Channel smoothing: efficient robust smoothing of low-level signal features. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 209–222 (2006)
Kass, M., Solomon, J.: Smoothed local histogram filters. ACM Trans. Graph. 29(4), 100:1–100:10 (2010)
Karacan, L., Erdem, E., Erdem, A.: Structure-preserving image smoothing via region covariances. ACM Trans. Graph. (TOG) 32(6), 176:1–176:11 (2013)
Criminisi, A., Sharp, T., Rother, C., Perez, P.: Geodesic image and video editing. ACM Trans. Graph. (TOG) 29(5), 134 (2010)
Farbman, Z., Fattal, R., Lischinski, D.: Diffusion maps for edge-aware image editing. ACM Trans. Graph. (TOG) 29(6), 145:1–145:10 (2010)
Wolters, A., Koffka, K.: Principles of Gestalt Psychology, pp. 502–504. Routledge, London (1936)
Desolneux, A., Moisan, L., Morel, J.-M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach. Springer, Berlin (2008)
Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. (TOG) 26(3), 103:1–103:10 (2007)
Porikli, F.: Constant time O(1) bilateral filtering. In: IEEE CVPR, pp. 1–8 (2008)
Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. Int. J. Comput. Vision 81(1), 24–52 (2009)
Yang, Q., Tan, K., Ahuja, N.: Real-time O(1) bilateral filtering. In: IEEE CVPR, pp. 557–564 (2009)
Yang, Q.: Recursive bilateral filtering. In: ECCV, pp. 399–413 (2012)
Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. 28(3), 22:1–22:10 (2009)
Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. Comput. Vis. Pattern Recognit. 2, 60–65 (2005)
Paris, S., Hasinoff, S., Kautz, J.: Local Laplacian filters: edge-aware image processing with a Laplacian pyramid. ACM Trans. Graph. 30(4), 68:1–68:12 (2011)
Gastal, E., Oliveira, M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. 30(4), 69:1–69:12 (2011)
Strand, R., Ciesielski, K., Malmberg, F., Saha, P.: The minimum barrier distance. Comput. Vis. Image Underst. 117(4), 429–437 (2013)
Ciesielski, K., Strand, R., Malmberg, F., Saha, P.: Efficient algorithm for finding the exact minimum barrier distance. Comput. Vis. Image Underst. 123, 53–64 (2014)
Lezoray, O., Grady, L. (eds.): Image Processing and Analysis with Graphs. CRC Press, Boca Raton (2012)
Sanfeliu, A., Alquézar, R., Andrade, J., et al.: Graph-based representations and techniques for image processing and image analysis. Pattern Recognit. 35(3), 639–650 (2002)
Saha, P., Wehrli, F., Gomberg, B.: Fuzzy distance transform: theory, algorithms, and applications. Comput. Vis. Image Underst. 86(3), 171–190 (2002)
Udupa, J., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Image Process. 58(3), 246–261 (1996)
Couprie, M., Najman, L., Bertrand, G.: Quasi-linear algorithms for the topological watershed. J. Math. Imag. Vis. 22(2–3), 231–249 (2005)
Falcao, A., Stol, J., Alencar Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE PAMI 26(1), 19 (2004)
Fischer, B., Zöller, T., Buhmann, J. M.: Path based pairwise data clustering with application to texture segmentation. In: Computer Vision and Pattern Recognition, pp. 235–250 (2001)
Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Comput. Graph. Image Process. 10(3), 195–223 (1979)
Gower, J., Ross, G.: Minimum spanning trees and single linkage cluster analysis. Appl. Stat. 18(1), 54–64 (1969)
Soille, Pierre: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)
Meyer, F., Maragos, P.: Nonlinear scale-space representation with morphological levelings. J. Vis. Commun. Image Represent. 11(3), 245–265 (2000)
Hambrusch, S., He, X., Miller, R.: Parallel algorithms for gray-scale image component labeling on a mesh-connected computer. In: Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 100–108 (1992)
Braga-Neto, U., Goutsias, J.: Grayscale level connectivity: theory and applications. IEEE Trans. Image Process. 13(12), 1567–1580 (2004)
Liebig, J.: 1840, Salisbury, Plant Physiology, 4th edn. Wadsworth, Belmont (1992)
Najman, L., Cousty, J., Perret, B.: Playing with kruskal: algorithms for morphological trees in edge-weighted graphs. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing. Springer, pp 135–146 (2013)
Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)
Danda, S., Challa, A., Daya Sagar, B., Najman, L.: Some theoretical links between shortest path filters and minimum spanning tree filters. J. Math. Imag. Vis. 61(6), 745–762 (2018)
Miranda, P.A.V., Falcao, A.X.: Image Segmentation by the Image Foresting Transform. XX Concurso de Teses e Dissertaçoes, pp. 2043–2047 (2007)
Lerallut, R., Decenciere, E., Meyer, F.: Image filtering using morphological amoebas. Image Vis. Comput. 25(4), 395–404 (2007)
Huang, L., Li, L., Tan, Q.: Behavior-based trust in wireless sensor network. In: Asia-Pacific Web Conference. Springer, Berlin, pp. 214–223 (2006)
Yang, Q.: A non-local cost aggregation method for stereo matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1402–1409 (2012)
Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. (TOG) 31(6), 139 (2012)
Jiang, H., Wang, J., Yuan, Z., et al.: Salient object detection: a discriminative regional feature integration approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2083–2090 (2013)
Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. (TOG) 22(3), 313–318 (2003)
Acknowledgements
This research was supported by the National Key Research and Development Program of China (No.2018YFA0704605), the National Key Project of Science and Technology of China (No.2017ZX05064), National Natural Science Foundation of China (No. 61272523) and China Scholarship Council (CSC).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xu, L., Wang, F., Dempere-Marco, L. et al. Path-Based Analysis for Structure-Preserving Image Filtering. J Math Imaging Vis 62, 253–271 (2020). https://doi.org/10.1007/s10851-019-00941-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-019-00941-9