[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Q-Convexity Vector Descriptor for Image Analysis

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Shape representation is a main problem in computer vision, and shape descriptors are widely used for image analysis. In this paper, based on the previous work Balázs, P., Brunetti, S.: A New Shape Descriptor Based on a Q-convexity Measure, Lecture Notes in Computers Science 10502, 20th Discrete Geometry for Computer Imagery (DGCI) (2017) 267–278, we design a new convexity vector descriptor derived by the notion of the so-called generalized salient points matrix. We investigate properties of the vector descriptor, such as scale invariance and its behavior in a ranking task. Moreover, we present results on a binary and a multiclass classification problem using k-nearest neighbor, decision tree, and support vector machine methods. Results of these experiments confirm the good behavior of our proposed descriptor in accuracy, and its performance is comparable and, in some cases, superior to some recently published similar methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Balázs, P., Brunetti, S.: A measure of Q-convexity. Lecture Notes in Computers Science 9647, 19th Discrete Geometry for Computer Imagery (DGCI), Nantes, 219–230 (2016)

  2. Balázs, P., Brunetti, S.: A new shape descriptor based on a q-convexity measure. Lecture Notes in Computers Science 10502, 20th Discrete Geometry for Computer Imagery (DGCI), Wien, 267–278 (2017)

  3. Bloch, I., Colliot, O., Cesar Jr., R.M.: On the ternary spatial relation “between”. IEEE Trans. Syst. Man Cybern. B Cybern. 36(2), 312–327 (2006)

    Article  Google Scholar 

  4. Boxer, L.: Computing deviations from convexity in polygons. Pattern Recogn. Lett. 14, 163–167 (1993)

    Article  MATH  Google Scholar 

  5. Brunetti, S., Balázs, P.: A measure of \(Q\)-convexity for shape analysis. Pattern Recogn. Lett. (submitted)

  6. Brunetti, S., Daurat, A.: An algorithm reconstructing convex lattice sets. Theor. Comput. Sci. 304(1–3), 35–57 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brunetti, S., Daurat, A.: Reconstruction of convex lattice sets from tomographic projections in quartic time. Theor. Comput. Sci. 406(1–2), 55–62 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clement, M., Poulenard, A., Kurtz, C., Wendling, L.: Directional enlacement histograms for the description of complex spatial configurations between objects. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2366–2380 (2017)

    Article  Google Scholar 

  9. Daurat, A.: Salient points of q-convex sets. Int. J Pattern Recognit. Artif. Intell. 15, 1023–1030 (2001)

    Article  Google Scholar 

  10. Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Patt. Rec. 26, 167–174 (1993)

    Article  MathSciNet  Google Scholar 

  11. Frank, E., Hall, M.A., Witten, I.H.: The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, 4th edn. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  12. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  14. Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser, Basel (2007)

    Book  MATH  Google Scholar 

  15. Latecki, L.J., Lakamper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Comput. Vis. Image Und. 73(3), 441–454 (1999)

    Article  Google Scholar 

  16. Matsakis, P., Wendling, L.: A new way to represent the relative position between areal objects. IEEE Trans. Pattern Anal. Mach. Intell. 21(7), 634–643 (1999)

    Article  Google Scholar 

  17. Pick, G.A.: Geometrisches zur Zahlenlehre. Sitz.-Ber. Lotos (Prag) 19, 311–319 (1899)

    MATH  Google Scholar 

  18. Proffitt, D.: The measurement of circularity and ellipticity on a digital grid. Patt. Rec. 15, 383–387 (1982)

    Article  Google Scholar 

  19. Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE T. Pattern Anal. 28(9), 1501–1512 (2006)

    Article  Google Scholar 

  20. Ronse, C.: Bibliography on digital and computational convexity. IEEE Trans. Pattern Anal. Mach. Intell. 11(2), 181–190 (1989)

    Article  MATH  Google Scholar 

  21. Rosin, P.L., Zunic, J.: Probabilistic convexity measure. IET Image Process. 1(2), 182–188 (2007)

    Article  Google Scholar 

  22. Roussillon, T., Tougne, L., Sivignon, I.: Robust decomposition of a digital curve into convex and concave parts. In: 19th International Conference on Pattern Recognition (ICPR), pp. 1–4 (2008)

  23. Roussillon, T., Piégay, H., Sivignon, I., Tougne, L., Lavigne, F.: Automatic computation of pebble roundness using digital imagery and discrete geometry. Comput. Geosci. 35(10), 1992–2000 (2009)

    Article  Google Scholar 

  24. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 550–71 (2004)

    Article  Google Scholar 

  25. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 3rd edn. Thomson Learning, Toronto (2008)

    Google Scholar 

  26. Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  27. Stern, H.: Polygonal entropy: a convexity measure. Pattern Recogn. Lett. 10, 229–235 (1998)

    Article  MATH  Google Scholar 

  28. Zhang, D., Lu, G.: Shape-based image retrieval using generic Fourier descriptor. Signal Process.: Image Commun. 17(10), 825–848 (2002)

    Google Scholar 

  29. Zunic, J., Rosin, P.L.: A new convexity measure for polygons. IEEE Trans. Pattern Anal. 26(7), 923–934 (2004)

    Article  Google Scholar 

  30. Zunic, J., Rosin, P.L., Kopanja, L.: On the orientability of shapes. IEEE Trans. Image Process. 15(11), 3478–3487 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank P.L. Rosin for providing the dataset used in [21] and M. Clément for providing the noisy images from DRIVE and CHASEDB1 used in [8]. The collaboration of the authors was supported by the COST Action MP1207 “EXTREMA: Enhanced X-ray Tomographic Reconstruction: Experiment, Modeling, and Algorithms.” The research of Péter Balázs was supported by the NKFIH OTKA [Grant Number K112998].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Brunetti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balázs, P., Brunetti, S. A Q-Convexity Vector Descriptor for Image Analysis. J Math Imaging Vis 61, 193–203 (2019). https://doi.org/10.1007/s10851-018-0844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0844-7

Keywords

Navigation