Abstract
A weighted total variation model with a spatially varying regularization weight is considered. Existence of a solution is shown, and the associated Fenchel predual problem is derived. For automatically selecting the regularization function, a bilevel optimization framework is proposed. In this context, the lower-level problem, which is parameterized by the regularization weight, is the Fenchel predual of the weighted total variation model and the upper-level objective penalizes violations of a variance corridor. The latter object relies on a localization of the image residual as well as on lower and upper bounds inspired by the statistics of the extremes.
Similar content being viewed by others
References
Acar, R., Vogel, C.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10, 1217–1229 (1994)
Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, London (2003)
Almansa, A., Ballester, C., Caselles, V., Haro, G.: A TV based restoration model with local constraints. J. Sci. Comput. 34(3), 209–236 (2008)
Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000)
Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge University Press, Cambridge (1990)
Athavale, P., Jerrard, R., Novaga, M., Orlandi, G.: Weighted TV minimization and applications to vortex density models. Technical report, University of Pisa, Department of Mathematics (2015)
Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces, Applications to PDEs and optimization, MPS/SIAM series on optimization, vol. 6. Society for Industrial and Applied Mathematics (SIAM), Mathematical Programming Society (MPS), Philadelphia, PA (2006)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer Science & Business Media, Berlin (2006)
Barbu, V.: Optimal Control of Variational Inequalities, volume 100 of Res. Notes Math. Pitman, London (1984)
Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. Springer Monographs in Mathematics, 4th edn. Springer, Dordrecht (2012)
Bertalmio, M., Caselles, V., Rougé, B., Solé, A.: TV based image restoration with local constraints. J. Sci. Comput. 19, 95–122 (2003)
Boccardo, L., Murat, F.: Nouveaux résultats de convergence dans des problèmes unilatéraux. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. II (Paris, 1979/1980), volume 60 of Res. Notes in Math., pp. 64–85, 387–388. Pitman, Boston (1982)
Boccardo, L., Murat, F.: Homogenization of nonlinear unilateral problems. In: Composite Media and Homogenization Theory (Trieste, 1990), volume 5 of Progr. Nonlinear Differential Equations Appl., pp 81–105. Birkhäuser Boston, Boston (1991)
Calatroni, L., Chung, C., Reyes, J.C.D.L., Schönlieb, C.-B., Valkonen, T.: Bilevel approaches for learning of variational imaging models. 05 (2015)
Cao, V.C., De los Reyes, J.C., Schoenlieb, C.B.: Learning optimal spatially-dependent regularization parameters in total variation image restoration. ArXiv e-prints, Mar. (2016)
Chambolle, A.: An algorithm for total variation minimization and application. J. Math. Imaging Vis. 20, 89–97 (2004)
Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)
Chan, T., Golub, G., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)
Chen, Y.: Learning fast and effective image restoration models. PhD thesis, Graz University of Technology (2014)
Chen, Y., Yu, W., Pock, T.: On learning optimized reaction diffusion processes for effective image restoration. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June (2015)
De los Reyes, J.C., Schönlieb, C.-B., Valkonen, T.: Bilevel parameter learning for higher-order total variation regularisation models. J. Math. Imaging Vis. 57, 1–25 (2016)
De Los Reyes, J.C., Schönlieb, C.-B., Valkonen, T.: The structure of optimal parameters for image restoration problems. J. Math. Anal. Appl. 434(1), 464–500 (2016)
Dong, Y., Hintermüller, M., Rincon-Camacho, M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40(1), 82–104 (2011)
Dong, Y., Hintermüller, M., Rincon-Camacho, M.: A multi-scale vectorial l\(^{\tau }\)-tv framework for color image restoration. Int. J. Comput. Vis. 92(3), 296–307 (2011)
Dong, Y., Hintermüller, M., Rincon-Camacho, M.M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40(1), 82–104 (2011)
Dunford, N., Schwartz, J.T.: Linear operators. I. General theory. With the assistance of Bade, W.G., Bartle, R.G. Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York (1958)
Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. American Elsevier, New York (1976)
Fehrenbach, J., Nikolova, M., Steidl, G., Weiss, P.: Bilevel image denoising using Gaussianity tests. In: Scale space and variational methods in computer vision, volume 9087 of Lecture Notes in Computer Science, pp. 117–128. Springer, Cham (2015)
Frick, K., Marnitz, P., Munk, A.: Statistical multiresolution Dantzig estimation in imaging: fundamental concepts and algorithmic framework. Electr. J. Stat. 6, 231–268 (2012)
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer, Berlin (1986)
Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel (1984)
Gumbel, E.: Les valeurs extrêmes des distributions statistiques. Ann. Inst. H. Poincaré 5(2), 115–158 (1935)
Gumbel, E.J.: Statistics of Extremes. Dover Publications, Inc., Mineola (2004). Reprint of the 1958 original (Columbia University Press, New York; MR0096342)
Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function space: \(C\)- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009)
Hintermüller, M., Kunisch, K.: Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J. Appl. Math. 64, 1311–1333 (2004)
Hintermüller, M., Rautenberg, C.N.: On the density of classes of closed convex sets with pointwise constraints in Sobolev spaces. J. Math. Anal. Appl. 426(1), 585–593 (2015)
Hintermüller, M., Rautenberg, C.N., Rösel, S.: Density of Convex Intersections and Applications. WIAS Preprint No. 2333 (2016)
Hintermüller, M., Rautenberg, C.N., Wu, T., Langer, A.: Optimal selection of the regularization function in a generalized total variation model. Part II: Algorithm, its analysis and numerical tests. WIAS Preprint No. 2236 (2016)
Hintermüller, M., Rincon-Camacho, M.M.: Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration. Inverse Probl. 26(8), 1–30 (2010)
Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006)
Hintermüller, M., Surowiec, T.M., Mordukhovich, B.S.: Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints. Math. Program. 146(1–2), 555–582 (2014)
Hintermüller, M., Wu, T.: Bilevel optimization for calibrating point spread functions in blind deconvolution. Inverse Probl. Imaging 9(4), 1139–1169 (2015)
Hotz, T., Marnitz, P., Stichtenroth, R., Davies, L., Kabluchko, Z., Munk, A.: Locally adaptive image denoising by a statistical multiresolution criterion. Comput. Stat. Data Anal. 56(3), 543–558 (2012)
Jalalzai, K.: Regularization of inverse problems in image processing. PhD thesis, Ecole Polytechnique (2012)
Jalalzai, K.: Discontinuities of the minimizers of the weighted or anisotropic total variation for image reconstruction. Technical Report, Cornell University Library (2014). arXiv:1402.0026
Klatzer, T., Pock, T.: Continuous hyper-parameter learning for support vector machines. In: Proceedings of the 20th Computer Vision Winter Workshop, pp. 39–47 (2015)
Kunisch, K., Pock, T.: A bilevel optimization approach for parameter learning in variational models. SIAM J. Imaging Sci. 6(2), 938–983 (2013)
Luo, T., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)
Mosco, U.: Convergence of convex sets and solutions of variational inequalities. Adv. Math. 3(4), 510–585 (1969)
Ochs, P., Ranftl, R., Brox, T., Pock, T.: Bilevel optimization with nonsmooth lower level problems. In: Scale Space and Variational Methods in Computer Vision, volume 9087 of Lecture Notes in Computer Science, pp. 654–665. Springer, Cham (2015)
Outrata, J., Kocvara, M., Zowe, J.: Nonsmooth approach to optimization problems with equilibrium constraints. In: Nonconvex Optimization and its Applications, vol. 28. Kluwer Academic Publishers, Dordrecht (1998)
Rodrigues, J.F.: Obstacle Problems in Mathematical Physics. Elsevier, North-Holland (1987)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)
Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June (2014)
Schönlieb, C., De Los Reyes, J.C.: Image denoising: learning noise distribution via pde-constrained optimisation. Inverse Probl. Imaging 7(4), 1183–1214 (2013)
Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence (1997)
Tröltzsch, F.: Optimal control of partial differential equations, volume 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2010. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels
Vogel, C.: Computational methods for inverse problems. In: Frontiers Applied Mathematics, vol. 23. SIAM, Philadelphia (2002)
Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1), 49–62 (1979)
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was carried out in the framework of MATHEON supported by the Einstein Foundation Berlin within the ECMath Projects OT1, SE5 and SE15 as well as by the DFG under Grant No. HI 1466/7-1 “Free Boundary Problems and Level Set Methods”.
Rights and permissions
About this article
Cite this article
Hintermüller, M., Rautenberg, C.N. Optimal Selection of the Regularization Function in a Weighted Total Variation Model. Part I: Modelling and Theory. J Math Imaging Vis 59, 498–514 (2017). https://doi.org/10.1007/s10851-017-0744-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-017-0744-2
Keywords
- Image restoration
- Weighted total variation regularization
- Spatially distributed regularization weight
- Fenchel predual
- Bilevel optimization
- Variance corridor