Abstract
Based on the weighted total variation model and its analysis pursued in Hintermüller and Rautenberg 2016, in this paper a continuous, i.e., infinite dimensional, projected gradient algorithm and its convergence analysis are presented. The method computes a stationary point of a regularized bilevel optimization problem for simultaneously recovering the image as well as determining a spatially distributed regularization weight. Further, its numerical realization is discussed and results obtained for image denoising and deblurring as well as Fourier and wavelet inpainting are reported on.
Similar content being viewed by others
References
Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Volume 140 of Pure and Applied Mathematics. Elsevier/Academic Press, Amsterdam (2003)
Almansa, A., Ballester, C., Caselles, V., Haro, G.: A TV based restoration model with local constraints. J. Sci. Comput. 34(3), 209–236 (2008)
Athavale, P., Jerrard, R., Novaga, M., Orlandi, G.: Weighted TV minimization and applications to vortex density models. Technical report, University of Pisa, Department of Mathematics, (2015)
Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV spaces. MPS-SIAM, (2006)
Barbu, V.: Optimal control of variational inequalities. Res, vol. 100. Notes Math. Pitman, London, United Kingdom (1984)
Bertalmio, M., Caselles, V., Rougé, B., Solé, A.: TV based image restoration with local constraints. J. Sci. Comput. 19, 95–122 (2003)
Bertsekas, D.P.: On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans. Autom. Control AC–21(2), 174–184 (1976)
Bertsekas, D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20(2), 221–246 (1982)
Bertsekas, D.P. Gafni, E.M.: Convergence of a gradient projection method. Report P-121, Laboratory for Information and Decision Systems Report, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, (1982)
Brézis, H.: Problèmes Unilatéraux. PhD thesis, Sc. math. Paris VI. 1971., (1972)
Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008)
Cao, V.C., De los Reyes, J. C., Schoenlieb, C.B.: Learning optimal spatially-dependent regularization parameters in total variation image restoration. ArXiv e-prints, Mar. (2016)
Chan, R.H., Yang, J., Yuan, X.: Alternating direction method for image inpainting in wavelet domain. SIAM J. Imaging Sci. 4, 807–826 (2011)
Chan, T.F., Shen, J., Zhou, H.-M.: Total variation wavelet inpainting. J. Math. Imaging Vis. 25, 107–125 (2006)
Chen, K., Dong, Y., Hintermüller, M.: A nonlinear multigrid solver with line Gauss-Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image restoration. Inverse Probl. Imaging 5(2), 323–339 (2011)
Chipot, M.: Variational Inequalities and Flow in Porous Media. Springer, New York (1984)
Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Fixed-point algorithms for inverse problems in science and engineering, volume 49 of Springer Optim. Appl., pp.185–212. Springer, New York, (2011)
De los Reyes, J.C., Schönlieb, C.-B., Valkonen, T.: Bilevel parameter learning for higher-order total variation regularisation models. Journal of Mathematical Imaging and Vision, pages 1–25, (2016)
De Los Reyes, J.C., Schönlieb, C.-B., Valkonen, T.: The structure of optimal parameters for image restoration problems. J. Math. Anal. Appl. 434(1), 464–500 (2016)
Deledalle, C.-A., Vaiter, S., Fadili, J., Peyré, G.: Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection. SIAM J. Imaging Sci. 7(4), 2448–2487 (2014)
Dong, Y., Hintermüller, M., Rincon-Camacho, M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40(1), 82–104 (2011)
Dong, Y., Hintermüller, M., Rincon-Camacho, M.: A multi-scale vectorial l\(^{\tau }\)-TV framework for color image restoration. Int. J. Comput. Vis. 92(3), 296–307 (2011)
Dong, Y., Hintermüller, M., Rincon-Camacho, M.M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40(1), 82–104 (2011)
Frick, K., Marnitz, P., Munk, A.: Statistical multiresolution Dantzig estimation in imaging: fundamental concepts and algorithmic framework. Electron. J. Stat. 6, 231–268 (2012)
Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Volume 24 of Monographs and Studies in Mathematics. Pitman. Advanced Publishing Program, Boston, MA (1985)
Gumbel, E.: Les valeurs extrêmes des distributions statistiques. Ann. Inst. H. Poincaré 5(2), 115–158 (1935)
Gumbel, E.J.: Statistics of extremes. Dover Publications, Inc., Mineola, NY, 2004. Reprint of the 1958 original [Columbia University Press, New York; MR0096342]
Haber, E., Tenorio, L.: Learning regularization functionals—a supervised training approach. Inverse Probl. 19(3), 611–626 (2003)
Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function space: \(C\)- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009)
Hintermüller, M., Kunisch, K.: Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17(1), 159–187 (2006). (electronic)
Hintermüller, M., Rautenberg, C.N.: Optimal selection of the regularization function in a generalized total variation model. Part I: Modelling and theory. WIAS Preprint No. 2235, (2016)
Hintermüller, M., Rautenberg, C.N.: On the density of classes of closed convex sets with pointwise constraints in Sobolev spaces. J. Math. Anal. Appl. 426(1), 585–593 (2015)
Hintermüller, M., Rincon-Camacho, M.: Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration. Inverse Probl. 26(8), 085005 (2010)
Hintermüller, M., Surowiec, T.M., Mordukhovich, B.S.: Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints. Math. Program. 146(1–2), 555–582 (2014)
Hintermüller, M., Wu, T.: Bilevel optimization for calibrating point spread functions in blind deconvolution. Inverse Probl. Imaging 9(4), 1139–1169 (2015)
Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, volume 23. Springer, New York (2009)
Hotz, T., Marnitz, P., Stichtenroth, R., Davies, L., Kabluchko, Z., Munk, A.: Locally adaptive image denoising by a statistical multiresolution criterion. Comput. Stat. Data Anal. 56(3), 543–558 (2012)
Jalalzai, K.: Regularization of inverse problems in image processing. Ph.D. thesis, Ecole Polytechnique (2012)
Kinderlehrer, D., Stampacchia, G.: An introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia (2000)
Kunisch, K., Pock, T.: A bilevel optimization approach for parameter learning in variational models. SIAM J. Imaging Sci. 6, 938–983 (2012)
Luo, T., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrum Constraints. Cambridge University Press, Cambridge (1996)
Nittka, R.: Elliptic and parabolic problems with Robin boundary conditions on Lipschitz domains. Ph.D. thesis, Universität Ulm (2010)
Nittka, R.: Quasilinear elliptic and parabolic Robin problems on Lipschitz domains. NoDEA Nonlinear Differ. Equ. Appl. 20(3), 1125–1155 (2013)
Outrata, J., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Nonconvex Optimization and its Applications, vol. 28. Kluwer Academic, Dordrecht (1998)
Pesquet, J.-C., Benazza-Benyahia, A., Chaux, C.: A SURE approach for digital signal/image deconvolution problems. IEEE Trans. Signal Process. 57(12), 4616–4632 (2009)
Rodrigues, J.F.: Obstacle Problems in Mathematical Physics. North-Holland, Amsterdam (1987)
Schönlieb, C., De Los Reyes, J.C.: Image denoising: learning noise distribution via PDE-constrained optimisation. Inverse Probl. Imaging 7(4), 1183–1214 (2013)
Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)
Showalter, R.E.: Hilbert Space Methods for Partial Differential Equations. (Monographs and Studies in Mathematics.). Pitman, London (1977)
Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence (1997)
Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Volume 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2010). Translated from the 2005 German original by Jürgen Sprekels
Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1), 49–62 (1979)
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was carried out in the framework of Matheon supported by the Einstein Foundation Berlin within the ECMath projects OT1, SE5 and SE15 as well as by the DFG under Grant No. HI 1466/7-1 “Free Boundary Problems and Level Set Methods”.
A. Langer is listed as a co-author as he was involved in early numerical tests prior to writing this paper. In particular, he found the discretization of the \(\nabla \circ {\text {div}}\)-operator of [15] suitable for the present context, performed numerical tests concerning the choice of the upper level objective and the initial choice of \(\alpha =2.5~\times ~10^{-3}\) when solving the bilevel problem. He also provided the original source images used in Figs. 6 and 8.
Rights and permissions
About this article
Cite this article
Hintermüller, M., Rautenberg, C.N., Wu, T. et al. Optimal Selection of the Regularization Function in a Weighted Total Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests. J Math Imaging Vis 59, 515–533 (2017). https://doi.org/10.1007/s10851-017-0736-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-017-0736-2
Keywords
- Image restoration
- Weighted total variation regularization
- Spatially distributed regularization weight
- Fenchel predual
- Bilevel optimization
- Variance corridor
- Projected gradient method
- Convergence analysis