[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the Functionality and Usefulness of Quadraginta Octants of Naive Sphere

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper presents a novel study on the functional gradation of coordinate planes in connection with the thinnest and tunnel-free (i.e., naive) discretization of sphere in the integer space. For each of the 48-symmetric quadraginta octants of naive sphere with integer radius and integer center, we show that the corresponding voxel set forms a bijection with its projected pixel set on a unique coordinate plane, which thereby serves as its functional plane. We use this fundamental property to prove several other theoretical results for naive sphere. First, the quadraginta octants form symmetry groups and subgroups with certain equivalent topological properties. Second, a naive sphere is always unique and consists of fewest voxels. Third, it is efficiently constructible from its functional-plane projection. And finally, a special class of 4-symmetric discrete 3D circles can be constructed on a naive sphere based on back projection from the functional plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. A ‘jump’ here is synonymous with ‘mono-jump’ in the context of our work.

References

  1. Aveneau, L., Andres, E., Mora, F.: Expressing discrete geometry using the conformal model. In: 5th Conference on Applied Geometric Algebras in Computer Science and Engineering (AGACSE’12). La Rochelle, France (2012). https://hal.archives-ouvertes.fr/hal-00865103

  2. Aveneau, L., Fuchs, L., Andres, E.: Digital geometry from a geometric algebra perspective. In: 18th IAPR International Conference on Discrete Geometry for Computer Imagery (DGCI’14), Lecture Notes in Computer Science, vol. 8668, pp. 358–369. Siena, Italy (2014)

  3. Biswas, R., Bhowmick, P.: On finding spherical geodesic paths and circles in \({\mathbb{{Z}}}^3\). In: 18th International Conference on Discrete Geometry for Computer Imagery (DGCI’14), Lecture Notes in Computer Science, vol. 8668, pp. 396–409. Siena, Italy (2014)

  4. Biswas, R., Bhowmick, P.: On different topological classes of spherical geodesic paths and circles in \({\mathbb{{Z}}}^3\). Theoret. Comput. Sci. 605, 146–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biswas, R., Bhowmick, P.: From prima quadraginta octant to lattice sphere through primitive integer operations. Theoret. Comput. Sci. 624, 56–72 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biswas, R., Bhowmick, P.: On functionality of quadraginta octants of naive sphere with application to circle drawing. In: 19th International Conference on Discrete Geometry for Computer Imagery (DGCI’16), Lecture Notes in Computer Science, vol. 9647, pp. 256–267. Nantes, France (2016)

  7. Biswas, R., Bhowmick, P., Brimkov, V.E.: On the connectivity and smoothness of discrete spherical circles. In: 17th International Workshop on Combinatorial Image Analysis (IWCIA’15), Lecture Notes in Computer Science, vol. 9448, pp. 86–100. Kolkata, India (2015)

  8. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)

    Article  Google Scholar 

  9. Brimkov, V.E., Barneva, R.P.: Graceful planes and thin tunnel-free meshes. In: 8th International Conference on Discrete Geometry for Computer Imagery (DGCI’99), Lecture Notes in Computer Science, vol. 1568, pp. 53–64 (1999)

  10. Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theoret. Comput. Sci. 283(1), 151–170 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theoret. Comput. Sci. 319(1–3), 203–227 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brimkov, V.E., Barneva, R.P.: Plane digitization and related combinatorial problems. Discrete Appl. Math. 147(2–3), 169–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discrete Appl. Math. 155(4), 468–495 (2007)

  14. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models Image Process. 57(6), 453–461 (1995)

  15. Cohen-Or, D., Kaufman, A.: 3D line voxelization and connectivity control. IEEE Comput. Graph. Appl. 17(6), 80–87 (1997)

    Article  Google Scholar 

  16. Gouraud, H.: Continuous shading of curved surfaces. IEEE Trans. Comput. 20(6), 623–629 (1971)

    Article  MATH  Google Scholar 

  17. Kaufman, A.: Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes. SIGGRAPH Comput. Graph. 21(4), 171–179 (1987)

    Article  Google Scholar 

  18. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  19. Mukhopadhyay, J., Das, P.P., Chattopadhyay, S., Bhowmick, P., Chatterji, B.N.: Digital Geometry in Image Processing. CRC, Boca Raton (2013)

    MATH  Google Scholar 

  20. Toutant, J.L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: from morphological models to analytical characterizations and topological properties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranita Biswas.

Additional information

A preliminary version of this work was presented in DGCI’16 [6].

Appendix: Notations for C-octants and Q-octants

Appendix: Notations for C-octants and Q-octants

C-oct

Q-octants

Notation

\({\mathbb {C}}_{1}\)

\({\mathbb {Q}}_{1},\ldots ,{\mathbb {Q}}_{6}\)

\(+++\)

\({\mathbb {C}}_{2}\)

\({\mathbb {Q}}_{7},\ldots ,{\mathbb {Q}}_{12}\)

\(-++\)

\({\mathbb {C}}_{3}\)

\({\mathbb {Q}}_{13},\ldots ,{\mathbb {Q}}_{18}\)

\(+-+\)

\({\mathbb {C}}_{4}\)

\({\mathbb {Q}}_{19},\ldots ,{\mathbb {Q}}_{24}\)

\({-}{-}+\)

\({\mathbb {C}}_{5}\)

\({\mathbb {Q}}_{25},\ldots ,{\mathbb {Q}}_{30}\)

\(++-\)

\({\mathbb {C}}_{6}\)

\({\mathbb {Q}}_{31},\ldots ,{\mathbb {Q}}_{36}\)

\(-+-\)

\({\mathbb {C}}_{7}\)

\({\mathbb {Q}}_{37},\ldots ,{\mathbb {Q}}_{42}\)

\(+{-}{-}\)

\({\mathbb {C}}_{8}\)

\({\mathbb {Q}}_{43},\ldots ,{\mathbb {Q}}_{48}\)

\({-}{-}{-}\)

Q-oct

Notation

Q-oct

Notation

Q-oct

Notation

\({\mathbb {Q}}_{1}\)

\((+1, +2, +3)\)

\({\mathbb {Q}}_{2}\)

\((+2, +1, +3)\)

\({\mathbb {Q}}_{3}\)

\((+2, +3, +1)\)

\({\mathbb {Q}}_{7}\)

\((-1, +2, +3)\)

\({\mathbb {Q}}_{8}\)

\((+2, -1, +3)\)

\({\mathbb {Q}}_{9}\)

\((+2, +3, -1)\)

\({\mathbb {Q}}_{13}\)

\((+1, -2, +3)\)

\({\mathbb {Q}}_{14}\)

\((-2, +1, +3)\)

\({\mathbb {Q}}_{15}\)

\((-2, +3, +1)\)

\({\mathbb {Q}}_{19}\)

\((-1, -2, +3)\)

\({\mathbb {Q}}_{20}\)

\((-2, -1, +3)\)

\({\mathbb {Q}}_{21}\)

\((-2, +3, -1)\)

\({\mathbb {Q}}_{25}\)

\((+1, +2, -3)\)

\({\mathbb {Q}}_{26}\)

\((+2, +1, -3)\)

\({\mathbb {Q}}_{27}\)

\((+2, -3, +1)\)

\({\mathbb {Q}}_{31}\)

\((-1, +2, -3)\)

\({\mathbb {Q}}_{32}\)

\((+2, -1, -3)\)

\({\mathbb {Q}}_{33}\)

\((+2, -3, -1)\)

\({\mathbb {Q}}_{37}\)

\((+1, -2, -3)\)

\({\mathbb {Q}}_{38}\)

\((-2, +1, -3)\)

\({\mathbb {Q}}_{39}\)

\((-2, -3, +1)\)

\({\mathbb {Q}}_{43}\)

\((-1, -2, -3)\)

\({\mathbb {Q}}_{44}\)

\((-2, -1, -3)\)

\({\mathbb {Q}}_{45}\)

\((-2, -3, -1)\)

Q-oct

Notation

Q-oct

Notation

Q-oct

Notation

\({\mathbb {Q}}_{4}\)

\((+3, +2, +1)\)

\({\mathbb {Q}}_{5}\)

\((+3, +1, +2)\)

\({\mathbb {Q}}_{6}\)

\((+1, +3, +2)\)

\({\mathbb {Q}}_{10}\)

\((+3, +2, -1)\)

\({\mathbb {Q}}_{11}\)

\((+3, -1, +2)\)

\({\mathbb {Q}}_{12}\)

\((-1, +3, +2)\)

\({\mathbb {Q}}_{16}\)

\((+3, -2, +1)\)

\({\mathbb {Q}}_{17}\)

\((+3, +1, -2)\)

\({\mathbb {Q}}_{18}\)

\((+1, +3, -2)\)

\({\mathbb {Q}}_{22}\)

\((+3, -2, -1)\)

\({\mathbb {Q}}_{23}\)

\((+3, -1, -2)\)

\({\mathbb {Q}}_{24}\)

\((-1, +3, -2)\)

\({\mathbb {Q}}_{28}\)

\((-3, +2, +1)\)

\({\mathbb {Q}}_{29}\)

\((-3, +1, +2)\)

\({\mathbb {Q}}_{30}\)

\((+1, -3, +2)\)

\({\mathbb {Q}}_{34}\)

\((-3, +2, -1)\)

\({\mathbb {Q}}_{35}\)

\((-3, -1, +2)\)

\({\mathbb {Q}}_{36}\)

\((-1, -3, +2)\)

\({\mathbb {Q}}_{40}\)

\((-3, -2, +1)\)

\({\mathbb {Q}}_{41}\)

\((-3, +1, -2)\)

\({\mathbb {Q}}_{42}\)

\((+1, -3, -2)\)

\({\mathbb {Q}}_{46}\)

\((-3, -2, -1)\)

\({\mathbb {Q}}_{47}\)

\((-3, -1, -2)\)

\({\mathbb {Q}}_{48}\)

\((-1, -3, -2)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Bhowmick, P. On the Functionality and Usefulness of Quadraginta Octants of Naive Sphere. J Math Imaging Vis 59, 69–83 (2017). https://doi.org/10.1007/s10851-017-0718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0718-4

Keywords

Navigation