[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Graph Characterization by Counting Sink Star Subgraphs

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we study the polynomial coefficients of the reduced Bartholdi zeta function for characterizing simple unweighted graphs and demonstrate how to use these coefficients for clustering graphs. The polynomial coefficients of the reduced Bartholdi zeta function are invariant to vertex order permutations and also carry information about counting the sink star subgraphs in a symmetric digraph of G. We also investigate the advantages of the reduced Bartholdi coefficients over other spectral methods such as the Ihara zeta function and Laplacian spectra. Experimental results indicate that the proposed method is more effective than the other spectral approaches, and compared to the Ihara zeta function, it has less sensitivity to structural noises such as omitting an edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anand, K., Bianconi, G., Severini, S.: Shannon and von Neumann entropy of random networks with heterogeneous expected degree. Phys. Rev. E 83(3), 036109 (2011)

    Article  MathSciNet  Google Scholar 

  2. Auwatanamongkol, S.: Inexact graph matching using a genetic algorithm for image recognition. Pattern Recognit. Lett. 28(12), 1428–1437 (2007)

    Article  Google Scholar 

  3. Aziz, F., Wilson, R.C., Hancock, E.R.: Backtrackless walks on a graph. IEEE Trans. Neural Netw. Learn. Syst. (99), 1–1 (2013)

  4. Borzeshi, E.Z., Piccardi, M., Riesen, K., Bunke, H.: Discriminative prototype selection methods for graph embedding. Pattern Recognit. 46(6), 1648–1657 (2013)

    Article  MATH  Google Scholar 

  5. Bai, L., Escolano, F., Hancock, E.R.: Depth-based hypergraph complexity traces from directed line graphs. Pattern Recognit. 54, 229–240 (2016)

    Article  Google Scholar 

  6. Bai, L., Hancock, E.R.: Graph kernels from the jensen-shannon divergence. J. Math. Imaging Vis. 47(1–2), 60–69 (2013)

    Article  MATH  Google Scholar 

  7. Bai, L., Hancock, E.R.: Depth-based complexity traces of graphs. Pattern Recognit. 47(3), 1172–1186 (2014)

    Article  MATH  Google Scholar 

  8. Bai, L., Rossi, L., Bunke, H., Hancock, E.R.: Attributed graph kernels using the jensen-tsallis q-differences. In Joint European conference on machine learning and knowledge discovery in databases, Springer, pp. 99–114 (2014)

  9. Bai, L., Rossi, L., Zhang, Z., Hancock, E.: An aligned subtree kernel for weighted graphs. In Proceedings of the 32nd international conference on machine learning (ICML-15), pp. 30–39 (2015)

  10. Bai, X., Hancock, E.R.: Recent results on heat kernel embedding of graphs, pp. 373–382. GbRPR, Springer (2005)

    MATH  Google Scholar 

  11. Bartholdi, L.: Counting paths in graphs, arXiv preprint arXiv:math/0012161 (2000)

  12. Bass, H.: The Ihara-Selberg zeta function of a tree lattice. Int. J. Math. 3(06), 717–797 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Biasotti, S., Marini, S., Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B.: 3D shape matching through topological structures, DGCI, pp. 194–203 (2003)

  14. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs, pp. 74–81. In IEEE international conference on data mining, IEEE (2005)

    Google Scholar 

  15. Bunke, H., Riesen, K.: Improving vector space embedding of graphs through feature selection algorithms. Pattern Recognit. 44(9), 1928–1940 (2011)

    Article  Google Scholar 

  16. Chen, N., Zhu, J., Sun, F., Zhang, B.: Learning harmonium models with infinite latent features. Neural Netw. Learn. Syst. IEEE Trans. 25(3), 520–532 (2014)

    Article  Google Scholar 

  17. Cooper, Y.: Properties determined by the ihara zeta function of a graph. Electron. J. Comb. 16(1) (2009)

  18. Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recognit. 42(9), 1988–2002 (2009)

    Article  MATH  Google Scholar 

  19. Ethz 53 objects datasets. http://www.vision.ee.ethz.ch/en/datasets/

  20. Escolano, F., Hancock, E.R., Lozano, M.A.: Heat diffusion: thermodynamic depth complexity of networks. Phys. Rev. E 85(3), 036206 (2012)

    Article  Google Scholar 

  21. Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., Borgwardt, K.: Scalable kernels for graphs with continuous attributes. In Advances in neural information processing systems, pp. 216–224 (2013)

  22. Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: An approximate algorithm for median graph computation using graph embedding, pp. 1–4 (2008)

  23. Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: A fast matching algorithm for graph-based handwriting recognition, pp. 194–203. In Graph-based representations in pattern recognition, Springer (2013)

    MATH  Google Scholar 

  24. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)

    Article  MathSciNet  Google Scholar 

  25. Hancock, E.: Spectral approaches to learning in the graph domain, pp. 47–47 (2010)

  26. Harandi, M.T., Sanderson, C., Shirazi, S., Lovell, B.C.: Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching, pp. 2705–2712 (2011)

  27. Harris, C., Stephens, M.: A combined corner and edge detector. In Alvey vision conference, vol. 15, Citeseer, p. 50 (1988)

  28. Hashimoto, K.: Artin type l-functions and the density theorem for prime cycles on finite graphs. Int. J. Math. 3(06), 809–826 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM (JACM) 21(2), 277–292 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. Horton, M.D.: Ihara zeta functions of irregular graphs (2006)

  31. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp. 158–167 (2004)

  32. Ihara, Y.: Discrete subgroups of pl (2, k). In Algebraic groups and discontinuous subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pp. 272–278 (1965)

  33. Ihara, Y.: On discrete subgroups of the two by two projective linear group over \(p\)-adic fields. J. Math. Soc. Jpn. 18(3), 219–235 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kaltofen, E., Villard, G.: On the complexity of computing determinants. Comput. Complex. 13(3–4), 91–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kannan, R.J., Prabhakar, R.: An improved handwritten Tamil character recognition system using octal graph (2008)

  36. Kondor, R., Shervashidze, N., Borgwardt, K.M.: The graphlet spectrum. In Proceedings of the 26th annual international conference on machine learning, ACM, pp. 529–536 (2009)

  37. Kotani, M., Sunada, T.: Zeta functions of finite graphs (2000)

  38. Kramer, S., De Raedt, L.: Feature construction with version spaces for biochemical applications. In Proceedings of the 18th international conference on machine learning (ICML 2001), Morgan Kaufman, pp. 258–265 (2001)

  39. Kriege, N., Mutzel, P.: Subgraph matching kernels for attributed graphs, arXiv preprint arXiv:1206.6483 (2012)

  40. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognit. 36(10), 2213–2230 (2003)

    Article  MATH  Google Scholar 

  41. Meusel, R., Vigna, S., Lehmberg, O., Bizer, C.: Graph structure in the web—revisited: a trick of the heavy tail. In: Proceedings of the companion publication of the 23rd international conference on World wide web companion, International World Wide Web Conferences Steering Committee, pp. 427–432 (2014)

  42. Micheli, A.: Neural network for graphs: a contextual constructive approach. Neural Netw. IEEE Trans. 20(3), 498–511 (2009)

    Article  MathSciNet  Google Scholar 

  43. Mizuno, H., Sato, I.: Some weighted bartholdi zeta function of a digraph. Linear Algebra Appl. 445, 1–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nayar, S., Murase, H.: Visual learning and recognition of 3D objects from appearance. Int. J. Comput. Vis. 14(1), 5–24 (1995)

    Article  Google Scholar 

  45. Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit distance. Inf. Sci. 177(1), 239–247 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Passerini, F., Severini, S.: Quantifying complexity in networks: the von neumann entropy. Int. J. Agent Technol. Syst. (IJATS) 1(4), 58–67 (2009)

    Article  Google Scholar 

  47. Qiangrong, J., Hualan, L., Yuan, G.: Cycle kernel based on spanning tree. In Electrical and Control Engineering (ICECE), 2010 International Conference on, IEEE, pp. 656–659 (2010)

  48. Qureshi, R.J., Ramel, J.-Y., Cardot, H., Mukherji, P.: Combination of symbolic and statistical features for symbols recognition. In Signal processing, communications and networking. ICSCN’07. International conference on, IEEE 2007, pp. 477–482 (2007)

  49. Ren, P., Wilson, R., Hancock, E.: Graph characterization via ihara coefficients. IEEE Trans. Neural Netw. 22(2), 233–245 (2011)

    Article  Google Scholar 

  50. Ren, P., Aleksić, T., Wilson, R.C., Hancock, E.R.: A polynomial characterization of hypergraphs using the ihara zeta function. Pattern Recognit. 44(9), 1941–1957 (2011)

    Article  Google Scholar 

  51. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(4), 950–959 (2009)

  52. Riesen, K., Bunke, H.: Classification and Clustering of Vector Space Embedded Graphs. World Scientific, London (2010)

    Book  MATH  Google Scholar 

  53. Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 365–378 (2005)

    Article  Google Scholar 

  54. Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation, pp. 225–233. In Proceedings of the fifth Eurographics symposium on Geometry processing, Eurographics Association (2007)

    Google Scholar 

  55. Sato, I., Mitsuhashi, H., Morita, H.: A generalized bartholdi zeta function for a general graph. Linear and Multilinear Algebra, pp. 1–18 (2015)

  56. Schenker, A., Bunke, H., Last, M., Kandel, A.: Graph-Theoretic Techniques for Web Content Mining. World Scientific, London (2005)

    Book  MATH  Google Scholar 

  57. Scott, G., Storm, C.: The coefficients of the ihara zeta function. Involve J. Math. 1(2), 217–233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Sidere, N., Héroux, P., Ramel, J.Y.: Vector representation of graphs: application to the classification of symbols and letters. In 10th international conference on document analysis and recognition, IEEE, pp. 681–685 (2009)

  59. Storm, C.: Extending the Ihara-Selberg zeta function to hypergraphs. Ph.D. thesis, Dartmouth College Hanover, New Hampshire (2007)

  60. Storm, C.K.: The zeta function of a hypergraph. Electron. J. Comb. 13(1), R84 (2006)

    MathSciNet  MATH  Google Scholar 

  61. Storm, C.K.: Some graph properties determined by edge zeta functions, arXiv preprint arXiv:0708.1923 (2007)

  62. Sugiyama, M., Borgwardt, K.: Halting in random walk kernels. In Advances in neural information processing systems, pp. 1639–1647 (2015)

  63. Tahaei, M.S., Hashemi, S.N.: The coefficients of the reduced bartholdi zeta function. Linear Algebra Appl. 509, 1–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. Jain, A.K., Taxt, T.: Feature extraction methods for character recognition-a survey. Pattern Recognit. 29(4), 641–662 (1996)

    Article  Google Scholar 

  65. Ünay, D., Çataltepe, Z., Aksoy, S.: Recognizing patterns in signals, speech, images, and videos: ICPR 2010 contents, Istanbul, Turkey, August 23–26, 2010, contest reports, vol. 6388, Springer Science and Business Media (2011)

  66. Wilson, R., Hancock, E., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)

    Article  Google Scholar 

  67. Xiao, B., Hancock, E.R., Wilson, R.C.: Graph characteristics from the heat kernel trace. Pattern Recognit. 42(11), 2589–2606 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Naser Hashemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahaei, M.S., Hashemi, S.N. Graph Characterization by Counting Sink Star Subgraphs. J Math Imaging Vis 57, 439–454 (2017). https://doi.org/10.1007/s10851-016-0686-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0686-0

Keywords

Navigation