Abstract
In this paper, we study the polynomial coefficients of the reduced Bartholdi zeta function for characterizing simple unweighted graphs and demonstrate how to use these coefficients for clustering graphs. The polynomial coefficients of the reduced Bartholdi zeta function are invariant to vertex order permutations and also carry information about counting the sink star subgraphs in a symmetric digraph of G. We also investigate the advantages of the reduced Bartholdi coefficients over other spectral methods such as the Ihara zeta function and Laplacian spectra. Experimental results indicate that the proposed method is more effective than the other spectral approaches, and compared to the Ihara zeta function, it has less sensitivity to structural noises such as omitting an edge.
Similar content being viewed by others
References
Anand, K., Bianconi, G., Severini, S.: Shannon and von Neumann entropy of random networks with heterogeneous expected degree. Phys. Rev. E 83(3), 036109 (2011)
Auwatanamongkol, S.: Inexact graph matching using a genetic algorithm for image recognition. Pattern Recognit. Lett. 28(12), 1428–1437 (2007)
Aziz, F., Wilson, R.C., Hancock, E.R.: Backtrackless walks on a graph. IEEE Trans. Neural Netw. Learn. Syst. (99), 1–1 (2013)
Borzeshi, E.Z., Piccardi, M., Riesen, K., Bunke, H.: Discriminative prototype selection methods for graph embedding. Pattern Recognit. 46(6), 1648–1657 (2013)
Bai, L., Escolano, F., Hancock, E.R.: Depth-based hypergraph complexity traces from directed line graphs. Pattern Recognit. 54, 229–240 (2016)
Bai, L., Hancock, E.R.: Graph kernels from the jensen-shannon divergence. J. Math. Imaging Vis. 47(1–2), 60–69 (2013)
Bai, L., Hancock, E.R.: Depth-based complexity traces of graphs. Pattern Recognit. 47(3), 1172–1186 (2014)
Bai, L., Rossi, L., Bunke, H., Hancock, E.R.: Attributed graph kernels using the jensen-tsallis q-differences. In Joint European conference on machine learning and knowledge discovery in databases, Springer, pp. 99–114 (2014)
Bai, L., Rossi, L., Zhang, Z., Hancock, E.: An aligned subtree kernel for weighted graphs. In Proceedings of the 32nd international conference on machine learning (ICML-15), pp. 30–39 (2015)
Bai, X., Hancock, E.R.: Recent results on heat kernel embedding of graphs, pp. 373–382. GbRPR, Springer (2005)
Bartholdi, L.: Counting paths in graphs, arXiv preprint arXiv:math/0012161 (2000)
Bass, H.: The Ihara-Selberg zeta function of a tree lattice. Int. J. Math. 3(06), 717–797 (1992)
Biasotti, S., Marini, S., Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B.: 3D shape matching through topological structures, DGCI, pp. 194–203 (2003)
Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs, pp. 74–81. In IEEE international conference on data mining, IEEE (2005)
Bunke, H., Riesen, K.: Improving vector space embedding of graphs through feature selection algorithms. Pattern Recognit. 44(9), 1928–1940 (2011)
Chen, N., Zhu, J., Sun, F., Zhang, B.: Learning harmonium models with infinite latent features. Neural Netw. Learn. Syst. IEEE Trans. 25(3), 520–532 (2014)
Cooper, Y.: Properties determined by the ihara zeta function of a graph. Electron. J. Comb. 16(1) (2009)
Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recognit. 42(9), 1988–2002 (2009)
Ethz 53 objects datasets. http://www.vision.ee.ethz.ch/en/datasets/
Escolano, F., Hancock, E.R., Lozano, M.A.: Heat diffusion: thermodynamic depth complexity of networks. Phys. Rev. E 85(3), 036206 (2012)
Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., Borgwardt, K.: Scalable kernels for graphs with continuous attributes. In Advances in neural information processing systems, pp. 216–224 (2013)
Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: An approximate algorithm for median graph computation using graph embedding, pp. 1–4 (2008)
Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: A fast matching algorithm for graph-based handwriting recognition, pp. 194–203. In Graph-based representations in pattern recognition, Springer (2013)
Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)
Hancock, E.: Spectral approaches to learning in the graph domain, pp. 47–47 (2010)
Harandi, M.T., Sanderson, C., Shirazi, S., Lovell, B.C.: Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching, pp. 2705–2712 (2011)
Harris, C., Stephens, M.: A combined corner and edge detector. In Alvey vision conference, vol. 15, Citeseer, p. 50 (1988)
Hashimoto, K.: Artin type l-functions and the density theorem for prime cycles on finite graphs. Int. J. Math. 3(06), 809–826 (1992)
Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM (JACM) 21(2), 277–292 (1974)
Horton, M.D.: Ihara zeta functions of irregular graphs (2006)
Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp. 158–167 (2004)
Ihara, Y.: Discrete subgroups of pl (2, k). In Algebraic groups and discontinuous subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pp. 272–278 (1965)
Ihara, Y.: On discrete subgroups of the two by two projective linear group over \(p\)-adic fields. J. Math. Soc. Jpn. 18(3), 219–235 (1966)
Kaltofen, E., Villard, G.: On the complexity of computing determinants. Comput. Complex. 13(3–4), 91–130 (2005)
Kannan, R.J., Prabhakar, R.: An improved handwritten Tamil character recognition system using octal graph (2008)
Kondor, R., Shervashidze, N., Borgwardt, K.M.: The graphlet spectrum. In Proceedings of the 26th annual international conference on machine learning, ACM, pp. 529–536 (2009)
Kotani, M., Sunada, T.: Zeta functions of finite graphs (2000)
Kramer, S., De Raedt, L.: Feature construction with version spaces for biochemical applications. In Proceedings of the 18th international conference on machine learning (ICML 2001), Morgan Kaufman, pp. 258–265 (2001)
Kriege, N., Mutzel, P.: Subgraph matching kernels for attributed graphs, arXiv preprint arXiv:1206.6483 (2012)
Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognit. 36(10), 2213–2230 (2003)
Meusel, R., Vigna, S., Lehmberg, O., Bizer, C.: Graph structure in the web—revisited: a trick of the heavy tail. In: Proceedings of the companion publication of the 23rd international conference on World wide web companion, International World Wide Web Conferences Steering Committee, pp. 427–432 (2014)
Micheli, A.: Neural network for graphs: a contextual constructive approach. Neural Netw. IEEE Trans. 20(3), 498–511 (2009)
Mizuno, H., Sato, I.: Some weighted bartholdi zeta function of a digraph. Linear Algebra Appl. 445, 1–17 (2014)
Nayar, S., Murase, H.: Visual learning and recognition of 3D objects from appearance. Int. J. Comput. Vis. 14(1), 5–24 (1995)
Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit distance. Inf. Sci. 177(1), 239–247 (2007)
Passerini, F., Severini, S.: Quantifying complexity in networks: the von neumann entropy. Int. J. Agent Technol. Syst. (IJATS) 1(4), 58–67 (2009)
Qiangrong, J., Hualan, L., Yuan, G.: Cycle kernel based on spanning tree. In Electrical and Control Engineering (ICECE), 2010 International Conference on, IEEE, pp. 656–659 (2010)
Qureshi, R.J., Ramel, J.-Y., Cardot, H., Mukherji, P.: Combination of symbolic and statistical features for symbols recognition. In Signal processing, communications and networking. ICSCN’07. International conference on, IEEE 2007, pp. 477–482 (2007)
Ren, P., Wilson, R., Hancock, E.: Graph characterization via ihara coefficients. IEEE Trans. Neural Netw. 22(2), 233–245 (2011)
Ren, P., Aleksić, T., Wilson, R.C., Hancock, E.R.: A polynomial characterization of hypergraphs using the ihara zeta function. Pattern Recognit. 44(9), 1941–1957 (2011)
Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(4), 950–959 (2009)
Riesen, K., Bunke, H.: Classification and Clustering of Vector Space Embedded Graphs. World Scientific, London (2010)
Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 365–378 (2005)
Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation, pp. 225–233. In Proceedings of the fifth Eurographics symposium on Geometry processing, Eurographics Association (2007)
Sato, I., Mitsuhashi, H., Morita, H.: A generalized bartholdi zeta function for a general graph. Linear and Multilinear Algebra, pp. 1–18 (2015)
Schenker, A., Bunke, H., Last, M., Kandel, A.: Graph-Theoretic Techniques for Web Content Mining. World Scientific, London (2005)
Scott, G., Storm, C.: The coefficients of the ihara zeta function. Involve J. Math. 1(2), 217–233 (2008)
Sidere, N., Héroux, P., Ramel, J.Y.: Vector representation of graphs: application to the classification of symbols and letters. In 10th international conference on document analysis and recognition, IEEE, pp. 681–685 (2009)
Storm, C.: Extending the Ihara-Selberg zeta function to hypergraphs. Ph.D. thesis, Dartmouth College Hanover, New Hampshire (2007)
Storm, C.K.: The zeta function of a hypergraph. Electron. J. Comb. 13(1), R84 (2006)
Storm, C.K.: Some graph properties determined by edge zeta functions, arXiv preprint arXiv:0708.1923 (2007)
Sugiyama, M., Borgwardt, K.: Halting in random walk kernels. In Advances in neural information processing systems, pp. 1639–1647 (2015)
Tahaei, M.S., Hashemi, S.N.: The coefficients of the reduced bartholdi zeta function. Linear Algebra Appl. 509, 1–18 (2016)
Jain, A.K., Taxt, T.: Feature extraction methods for character recognition-a survey. Pattern Recognit. 29(4), 641–662 (1996)
Ünay, D., Çataltepe, Z., Aksoy, S.: Recognizing patterns in signals, speech, images, and videos: ICPR 2010 contents, Istanbul, Turkey, August 23–26, 2010, contest reports, vol. 6388, Springer Science and Business Media (2011)
Wilson, R., Hancock, E., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)
Xiao, B., Hancock, E.R., Wilson, R.C.: Graph characteristics from the heat kernel trace. Pattern Recognit. 42(11), 2589–2606 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tahaei, M.S., Hashemi, S.N. Graph Characterization by Counting Sink Star Subgraphs. J Math Imaging Vis 57, 439–454 (2017). https://doi.org/10.1007/s10851-016-0686-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-016-0686-0