[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Affine Invariant Distance Using Multiscale Analysis

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper we introduce an affine invariant distance definition from a \(2D\) point to the boundary of a bounded shape using morphological multiscale analysis. We study the mathematical behavior of this distance by examining separately the cases of convex and non-convex shapes. We prove that the proposed distance is bounded in the convex hull of the shape and infinite otherwise. A numerical scheme is given as well as experiments illustrating the behavior of the affine invariant distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alvarez, L., Morales, F.: Affine morphological multiscale analysis of corners and multiple junctions. Int. J. Comput. Vis. 25(2), 95–107 (1997)

    Article  Google Scholar 

  2. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axiomatisation et nouveaux opérateurs de la morphologie mathématique. Comptes rendus de l’Académie des sciences. Série 1, Mathématique 315(3), 265–268 (1992)

    MathSciNet  Google Scholar 

  3. Álvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axiomes et équations fondamentales du traitement d’images. (Analyse multiéchelle et edp). Comptes rendus de l’Académie des sciences. Série 1, Mathématique 315(2), 135–138 (1992)

    Google Scholar 

  4. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123(3), 199–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Angenent, S., Sapiro, G., Tannenbaum, A.: On the affine heat equation for non-convex curves. J. Am. Math. Soc. 11(3), 601–634 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, F., Lisani, J.L., Morel, J.M., Musé, P., Sur, F., et al.: A Theory of Shape Identification, vol. 1948. Springer, New York (2008)

    MATH  Google Scholar 

  7. Ciomaga, A., Morel, J.M.: A proof of equivalence between level lines shortening and curvature motion in image processing. SIAM J. Math. Anal. 45(3), 1047–1067 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciomaga, A., Monasse, P., Morel, J.M.: Level lines shortening yields an image curvature microscope. In: Image Processing (ICIP), 2010 17th IEEE International Conference on IEEE, pp. 4129–4132 (2010)

  9. Crandall, M.G.: Viscosity solutions: a primer. In: Dolcetta, I.C., Lions, P.L., (eds.) Viscosity solutions and applications (Montecatini Terme, 1995). Lecture Notes in Math, vol. 1660 pp. 1–43. Springer, Berlin (1997)

  10. Giblin, P.J., Sapiro, G.: Affine-invariant distances, envelopes and symmetry sets. Geom. Dedic. 71, 237–261 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guichard, F., Morel, J.M., Ryan, R.: Image analysis and pdes. preprint (2001)

  12. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  13. Kimmel, R., Kiryati, N., Bruckstein, A.: Sub-pixel distance maps and weighted distance transforms. J. Math. Imaging Vis. 6(2–3), 223–233 (1996)

    Article  MathSciNet  Google Scholar 

  14. Kimura, M.: Accurate numerical scheme for the flow by curvature. Appl. Math. Lett. 7(1), 69–73 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  16. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  17. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1–2), 43–72 (2005)

    Article  Google Scholar 

  18. Mikula, K.: Solution of nonlinear curvature driven evolution of plane convex curves. Appl. Numer. Math. 23(3), 347–360 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moisan, L.: Affine plane curve evolution: a fully consistent scheme. IEEE Trans. Image Process. 7(3), 411–420 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morel, J.M., Yu, G.: Asift: a new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morel, J., Yu, G.: Is sift scale invariant? Inverse Probl. Imaging 5(1), 115–136 (2011)

    Article  MATH  Google Scholar 

  22. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sapiro, G., Tannenbaum, A.: Affine invariant scale-space. Int. J. Comput. Vis. 11(1), 25–44 (1993)

    Article  MATH  Google Scholar 

  24. Sapiro, G., Tannenbaum, A.: On affine plane curve evolution. J. Funct. Anal. 119(1), 79–120 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ushijima, T.K., Yazaki, S.: Convergence of a crystalline algorithm for the motion of a closed convex curve by a power of curvature v=k \(\hat{} \,\,\alpha \). SIAM J. Numer. Anal. 37(2), 500–522 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu, G., Morel, J.M.: Asift: an algorithm for fully affine invariant comparison. Image Processing On Line 2011 (2011)

Download references

Acknowledgments

Work partly founded by the European Research Council (advanced Grant Twelve Labours) and the Office of Naval research (ONR Grant N00014-14-1-0023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Alvarez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, L., Cuenca, C., Esclarín, J. et al. Affine Invariant Distance Using Multiscale Analysis. J Math Imaging Vis 55, 199–209 (2016). https://doi.org/10.1007/s10851-015-0585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0585-9

Keywords

Navigation