Abstract
In this paper we introduce an affine invariant distance definition from a \(2D\) point to the boundary of a bounded shape using morphological multiscale analysis. We study the mathematical behavior of this distance by examining separately the cases of convex and non-convex shapes. We prove that the proposed distance is bounded in the convex hull of the shape and infinite otherwise. A numerical scheme is given as well as experiments illustrating the behavior of the affine invariant distance.
Similar content being viewed by others
References
Alvarez, L., Morales, F.: Affine morphological multiscale analysis of corners and multiple junctions. Int. J. Comput. Vis. 25(2), 95–107 (1997)
Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axiomatisation et nouveaux opérateurs de la morphologie mathématique. Comptes rendus de l’Académie des sciences. Série 1, Mathématique 315(3), 265–268 (1992)
Álvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axiomes et équations fondamentales du traitement d’images. (Analyse multiéchelle et edp). Comptes rendus de l’Académie des sciences. Série 1, Mathématique 315(2), 135–138 (1992)
Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123(3), 199–257 (1993)
Angenent, S., Sapiro, G., Tannenbaum, A.: On the affine heat equation for non-convex curves. J. Am. Math. Soc. 11(3), 601–634 (1998)
Cao, F., Lisani, J.L., Morel, J.M., Musé, P., Sur, F., et al.: A Theory of Shape Identification, vol. 1948. Springer, New York (2008)
Ciomaga, A., Morel, J.M.: A proof of equivalence between level lines shortening and curvature motion in image processing. SIAM J. Math. Anal. 45(3), 1047–1067 (2013)
Ciomaga, A., Monasse, P., Morel, J.M.: Level lines shortening yields an image curvature microscope. In: Image Processing (ICIP), 2010 17th IEEE International Conference on IEEE, pp. 4129–4132 (2010)
Crandall, M.G.: Viscosity solutions: a primer. In: Dolcetta, I.C., Lions, P.L., (eds.) Viscosity solutions and applications (Montecatini Terme, 1995). Lecture Notes in Math, vol. 1660 pp. 1–43. Springer, Berlin (1997)
Giblin, P.J., Sapiro, G.: Affine-invariant distances, envelopes and symmetry sets. Geom. Dedic. 71, 237–261 (1998)
Guichard, F., Morel, J.M., Ryan, R.: Image analysis and pdes. preprint (2001)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)
Kimmel, R., Kiryati, N., Bruckstein, A.: Sub-pixel distance maps and weighted distance transforms. J. Math. Imaging Vis. 6(2–3), 223–233 (1996)
Kimura, M.: Accurate numerical scheme for the flow by curvature. Appl. Math. Lett. 7(1), 69–73 (1994)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1–2), 43–72 (2005)
Mikula, K.: Solution of nonlinear curvature driven evolution of plane convex curves. Appl. Numer. Math. 23(3), 347–360 (1997)
Moisan, L.: Affine plane curve evolution: a fully consistent scheme. IEEE Trans. Image Process. 7(3), 411–420 (1998)
Morel, J.M., Yu, G.: Asift: a new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2(2), 438–469 (2009)
Morel, J., Yu, G.: Is sift scale invariant? Inverse Probl. Imaging 5(1), 115–136 (2011)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)
Sapiro, G., Tannenbaum, A.: Affine invariant scale-space. Int. J. Comput. Vis. 11(1), 25–44 (1993)
Sapiro, G., Tannenbaum, A.: On affine plane curve evolution. J. Funct. Anal. 119(1), 79–120 (1994)
Ushijima, T.K., Yazaki, S.: Convergence of a crystalline algorithm for the motion of a closed convex curve by a power of curvature v=k \(\hat{} \,\,\alpha \). SIAM J. Numer. Anal. 37(2), 500–522 (1999)
Yu, G., Morel, J.M.: Asift: an algorithm for fully affine invariant comparison. Image Processing On Line 2011 (2011)
Acknowledgments
Work partly founded by the European Research Council (advanced Grant Twelve Labours) and the Office of Naval research (ONR Grant N00014-14-1-0023).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Alvarez, L., Cuenca, C., Esclarín, J. et al. Affine Invariant Distance Using Multiscale Analysis. J Math Imaging Vis 55, 199–209 (2016). https://doi.org/10.1007/s10851-015-0585-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-015-0585-9