[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An Inertial Forward-Backward Algorithm for Monotone Inclusions

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we propose an inertial forward-backward splitting algorithm to compute a zero of the sum of two monotone operators, with one of the two operators being co-coercive. The algorithm is inspired by the accelerated gradient method of Nesterov, but can be applied to a much larger class of problems including convex-concave saddle point problems and general monotone inclusions. We prove convergence of the algorithm in a Hilbert space setting and show that several recently proposed first-order methods can be obtained as special cases of the general algorithm. Numerical results show that the proposed algorithm converges faster than existing methods, while keeping the computational cost of each iteration basically unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in hilbert space. SIAM J. Optim 14(3), 773–782 (2003)

    Article  MathSciNet  Google Scholar 

  2. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9(1–2), 3–11 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Becker, S., Fadili, J.: A Quasi–Newton proximal splitting method. Adv. Neural Info. Process. Sys. 25, 2627–2635 (2012)

    Google Scholar 

  6. Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl., (2014). http://www.heldermann.de/MTA/MTA01/MTA011/mta01003.htm.

  7. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Technical report, arXiv:1403.3330, (2014)

  8. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  9. Bruck, R.: On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in hilbert space. J. Math. Anal. Appl. 61, 159–164 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, G., Rockafellar, R.: Convergence rates in forward-backward splitting. SIAM J. Optim. 7(2), 421–444 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chouzenoux, E., Pesquet, J.-C., Repetti, A.: Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 1–26 (2013)

  13. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, lipschitzian, and parallel-sum type monotone operators. Set-Valued Variational Anal. 20(2), 307–330 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Combettes, P.L., Vũ, B.C.: Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization, 63(9), 1289–1318 (2012)

  15. Combettes, P.L., Wajs, V.: Signal recovery by proximal forward-backward splitting. SIAM Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Condat, L.: A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MATH  Google Scholar 

  18. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  19. Duchi, J., Singer, Y.: Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10, 2899–2934 (2009)

    MATH  MathSciNet  Google Scholar 

  20. Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA (1989)

  21. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

  23. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems. Chapter IX, pp. 299–340. North-Holland, Amsterdam (1983)

  24. Goldstein, A.A.: Convex programming in Hilbert spaces. Bull. Am. Math. Soc. 70, 709–710 (1964)

    Article  MATH  Google Scholar 

  25. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5(1), 119–149 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Levitin, E.S., Polyak, B.T.: Constrained minimization methods USSR. Comput. Math. Math. Phys. 6(5), 1–50 (1966)

    Article  Google Scholar 

  29. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  30. Martine, B.: Brève communication régularisation d’inéquations variationnelles par approximations successives. ESAIM: Mathematical Modelling and Numerical Analysis—Modélisation Mathématique et Analyse Numérique, 4(R3):154–158, (1970)

  31. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  32. Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MATH  MathSciNet  Google Scholar 

  33. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nesterov, Yu.: A method for solving the convex programming problem with convergence rate \(O(1/k^{2})\). Dokl. Akad. Nauk SSSR 269(3), 543–547 (1983)

    MathSciNet  Google Scholar 

  35. Nesterov, Y.: Introductory lectures on convex optimization: a basic course. In: Applied Optimization, vol. 87. Kluwer Academic Publishers, Boston, MA (2004)

  36. Nesterov, Yu.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Nesterov, Yu.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161 (2013)

  38. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  39. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  40. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pesquet, J.-C., Pustelnik, N.: A parallel inertial proximal optimization methods. Pac. J. Optim. 8(2), 273–305 (2012)

    MATH  MathSciNet  Google Scholar 

  42. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms. In: Proceedings of the International Conference of Computer Vision (ICCV 2011), pp. 1762–1769 (2011)

  43. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: Proceedings of the ICCV. Lecture Notes in Computer Science. Springer, Berlin (2009)

  44. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. U.S.S.R. Comput. Math. Math. Phys. 4(5), 1–17 (1964)

  45. Raguet, H., Fadili, J., Peyré, G.: A generalized forward-backward splitting. SIAM J. Imaging Sci. 6(3), 1199–1226 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  46. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  47. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29(1), 119–138 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  48. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. Technical report (2008)

  49. Vũ, B.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  50. Villa, S., Salzo, S., Baldassarre, L., Verri, A.: Accelerated and inexact forward-backward algorithms. SIAM J. Optim. 23(3), 1607–1633 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Thomas Pock acknowledges support from the Austrian science fund (FWF) under the project “Efficient algorithms for nonsmooth optimization in imaging”, No. I1148 and the FWF-START project Bilevel optimization for Computer Vision, No. Y729. The authors wish to thank Antonin Chambolle for very helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk A. Lorenz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenz, D.A., Pock, T. An Inertial Forward-Backward Algorithm for Monotone Inclusions. J Math Imaging Vis 51, 311–325 (2015). https://doi.org/10.1007/s10851-014-0523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0523-2

Keywords

Navigation