[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Stochastic Level Set Dynamics to Track Closed Curves Through Image Data

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We introduce a stochastic filtering technique for the tracking of closed curves from image sequence. For that purpose, we design a continuous-time dynamics that allows us to infer inter-frame deformations. The curve is defined by an implicit level-set representation and the stochastic dynamics is expressed on the level-set function. It takes the form of a stochastic partial differential equation with a Brownian motion of low dimension. The evolution model we propose combines local photometric information, deformations induced by the curve displacement and an uncertainty modeling of the dynamics. Specific choices of noise models and drift terms lead to an evolution law based on mean curvature as in classic level set methods, while other choices yield new evolution laws. The approach we propose is implemented through a particle filter, which includes color measurements characterizing the target and the background photometric probability densities respectively. The merit of this filter is demonstrated on various satellite image sequences depicting the evolution of complex geophysical flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. A mollified version of the Dirac function [8, 39] or simply δ=1 can be used for this purpose.

  2. A movie showing the method’s results from 01/01/2005 to 18/11/2009 is also available as a supplementary material accompanying this paper.

References

  1. Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnaud, E., Mémin, E.: Partial linear Gaussian model for tracking in image sequences using sequential Monte Carlo methods. Int. J. Comput. Vis. 74(1), 75–102 (2007)

    Article  Google Scholar 

  3. Artana, G., Cammilleri, A., Carlier, J., Mémin, E.: Strong and weak constraint variational assimilations for reduced order fluid flow modeling. J. Comput. Phys. 231(8), 3264–3288 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Avenel, C., Mémin, E., Pérez, P.: Tracking closed curves with non-linear stochastic filters. In: Conf. on Scale Space and Variational Methods (SSVM’09). Voss, Norway (2009)

    Google Scholar 

  5. Avenel, C., Mémin, E., Pérez, P.: Stochastic filtering of level sets for curve tracking. In: International Conference on Pattern Recognition (ICPR’10) (2010)

    Google Scholar 

  6. Avenel, C., Mémin, E., Pérez, P.: Tracking levels representation driven by a stochastic dynamics. In: 7th International Conference on Curves and Surfaces. Lecture Notes in Computer Science, vol. 6920, pp. 130–141 (2012)

    Chapter  Google Scholar 

  7. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  8. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  9. Chang, Y., Hou, T., Merriman, B., Osher, S.: A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 449–464 (1996)

  10. Coqrelle, M., Cottet, G.-H.: A vortex level set method for the two-way interacting coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227, 9121–9137 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cottet, G.-H., Maitre, E.: A level set method for fluid structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16(3), 415–438 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Crisan, D., Doucet, A.: Survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process. 50(3), 736–746 (2002)

    Article  MathSciNet  Google Scholar 

  13. Crisan, D., Rosovskii, B. (eds.): The Oxford Handbook of Nonlinear Filtering. Oxford University Press, London (2010)

    Google Scholar 

  14. Dambreville, S., Rathi, Y., Tannenbaum, A.: Tracking deformable objects with unscented Kalman filtering and geometric active contours. In: American Control Conference, pp. 1–6 (2006)

    Google Scholar 

  15. Del Moral, P.: Feynman-Kac Formulae Genealogical and Interacting Particle Systems with Applications. Probability and Applications. Springer, New York (2004)

    Book  MATH  Google Scholar 

  16. Dervieux, A., Thomasset, F.: A finite element method for the simulation of Rayleigh-Taylor instability. In: Approximation Methods for Navier-Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 145–159. Springer, Berlin (1979)

    Chapter  Google Scholar 

  17. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. Image Process. 10(10), 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  18. Gordon, N., Salmond, D., Smith, A.: Novel approach to non-linear/non-Gaussian Bayesian state estimation. IEEE Process. F 140(2) (1993)

  19. Gordon, N., Doucet, A., Freitas, J.D.: Sequential Monte Carlo Methods in Practice. Springer, Berlin (2001)

    MATH  Google Scholar 

  20. Hou, T., Lowengrub, J., Shelley, M.: Removing the stiffness from interfacial flows and surface tension. J. Comput. Phys. 114(2), 312–338 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hou, T., Klapper, I., Si, H.: Removing the stiffness of curvature in computing 3D filaments. J. Comput. Phys. 143(2), 628–664 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kimmel, R., Bruckstein, A.M.: Tracking level sets by level sets: a method for solving the shape from shading problem. Comput. Vis. Image Underst. 62(1), 47–58 (1995)

    Article  Google Scholar 

  24. Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  25. Merriman, B., Bence, J., Osher, S.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)

    Article  MathSciNet  Google Scholar 

  26. Mikula, K., Ševčvič, D.: A direct method for solving an anisotropic mean curvature flow of plane curves with an external force. Math. Methods Appl. Sci. 27, 1545–1565 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Niethammer, M., Tannenbaum, A.: Dynamic geodesic snakes for visual tracking. In: CVPR (1), pp. 660–667 (2004)

    Google Scholar 

  28. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surface. Springer, Berlin (2003)

    Book  Google Scholar 

  29. Osher, S., Paragios, N. (eds.): Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Berlin (2003)

    MATH  Google Scholar 

  30. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  31. Papadakis, N., Mémin, E.: A variational technique for time consistent tracking of curves and motion. J. Math. Imaging Vis. 31(1), 81–103 (2008)

    Article  Google Scholar 

  32. Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image Represent. 13, 249–268 (2002)

    Article  Google Scholar 

  33. Pons, J.-P., Hermosillo, G., Keriven, R., Faugeras, O.: Maintaining the point correspondence in the level set framework. J. Comput. Phys. 220(1), 339–354 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Tracking deforming objects using particle filtering for geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1470–1475 (2007)

    Article  Google Scholar 

  35. Sethian, J.: Level Set Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  36. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)

    Chapter  Google Scholar 

  37. Snyder, C., Bengtsson, T., Bickel, P., Anderson, J.: Obstacles to high-dimensional particle filtering. Mon. Weather Rev. 136(12), 4629–4640 (2008)

    Article  Google Scholar 

  38. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  39. Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the CERSAT/IFREMER laboratory and Meteo-France for having provided us the ice density satellite image and the meteorological infra-red sequence. The authors acknowledge the ANR projects PREVASSEMBLE (ANR-08-COSI-012) and Geo-Fluids (ANR-09-SYSC-005) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mémin.

Appendix

Appendix

This section details the different terms involved in the expression of the evolution equation associated to the vectorial level set ψ.

1.1 6.1 Drift computation details

ψ is driven by the same velocity fields (5) as φ. For a fixed point y we have:

$$ d\psi^i_t(y)=b_i(y,t)dt + f_i(y, t) dB_{n,t}+g_i(y,t)dB_{\tau,t}. $$
(40)

In the same way as for φ, the differential of \(\psi(\mathcal {X}_{t},t)\) at point \(\mathcal{X}_{t} = x\) reads:

$$\begin{aligned} d\psi^i(\mathcal{X}_t,t)&=d\psi^i_t(x)+ \bigl(\nabla\psi^i_t\bigr)^T d\mathcal{X} \\ &\quad{} + \frac {1}{2}\sum_{i,j}{d\bigl \langle \mathcal{X}_t^i,\mathcal{X}_tj\bigr \rangle \frac {\partial ^2\psi^i_t}{\partial x_i\partial x_j}} \\ &\quad{} +\sum_{i}{d\biggl \langle \frac{\partial\psi^i_t}{\partial x_i}, \mathcal {X}^i\biggr \rangle } = 0. \end{aligned}$$
(41)

Developing the brackets with (40) and equating in (41) the deterministic and random terms we obtain

$$\begin{aligned} &f(x,t)=-\sigma_n \bigl(\nabla\psi^i_t \bigr)^T \frac{\nabla\varphi}{|\nabla \varphi|}, \end{aligned}$$
(42)
$$\begin{aligned} &g(x,t)=-\sigma_\tau\bigl(\nabla\psi^i_t \bigr)^T \frac{\nabla\varphi^\perp }{|\nabla\varphi|}. \end{aligned}$$
(43)

From these expressions the drift term reads then:

$$ b(x,t)=-\bigl(\nabla\psi^i_t\bigr)^{T} \frac{\nabla\varphi}{|\nabla \varphi |} w^*_n -\frac{1}{2}A_i + F_i + G_i, $$
(44)

with

$$\begin{aligned} \begin{aligned} A_i&=\sigma_n^2\nabla\varphi^T \nabla^2\psi_t^i\nabla\varphi + \sigma_\tau ^2\bigl(\nabla\varphi^\bot \bigr)^T\nabla^2\psi_t^i\nabla \varphi^\bot,\\ F_i&=\frac{\sigma_n}{|\nabla\varphi|}\nabla\varphi^T \biggl[\nabla ^2\psi ^i_t\nabla\varphi+ \nabla^2\varphi\nabla\psi_t^i\\ &\quad{} - \frac {1}{|\nabla \varphi|^2} \bigl(\bigl(\nabla\psi_t^i \bigr)^T\nabla\varphi\nabla^2\varphi \nabla \varphi \bigr) \biggr] ,\\ G_i&=\frac{\sigma_\tau}{|\nabla\varphi|} \bigl(\nabla\varphi^\bot \bigr)^T \biggl[\nabla^2\psi^i_t \nabla\varphi^\bot+\nabla^2\varphi \nabla\psi _t^i\\ &\quad{} -\frac{1}{|\nabla\varphi|^2} \bigl(\bigl(\nabla \psi_t^i\bigr)^T\nabla \varphi ^\bot\nabla^2\varphi\nabla\varphi \bigr) \biggr]. \end{aligned} \end{aligned}$$
(45)

The differential of ψ for a fixed point reads finally:

$$\begin{aligned} d\psi^i_t(x) &= - \bigl(\nabla\psi^i_t \bigr)^{T}\frac{\nabla\varphi }{|\nabla \varphi|} w^*_n dt \\ &\quad{} -\sigma_n \bigl(\nabla\psi^i_t\bigr)^T \frac{\nabla \varphi }{|\nabla\varphi|}dB_{n,t} - \sigma_\tau\bigl(\nabla \psi^i_t\bigr)^T \frac {\nabla\varphi^\bot}{|\nabla\varphi|}dB_{\tau,t} \\ &\quad{} - \frac {A_i dt}{2|\nabla\varphi|^2} + \frac{\sigma_n F_i dt}{|\nabla \varphi |} + \frac{\sigma_\tau G_i dt}{|\nabla\varphi|}. \end{aligned}$$
(46)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avenel, C., Mémin, E. & Pérez, P. Stochastic Level Set Dynamics to Track Closed Curves Through Image Data. J Math Imaging Vis 49, 296–316 (2014). https://doi.org/10.1007/s10851-013-0464-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0464-1

Keywords

Navigation