Abstract
Image segmentation methods with length regularized edge sets are known to have segments whose endpoints either terminate perpendicularly to the boundary of the domain, terminate at a triple junction where three segments connect, or terminate at a free endpoint where the segment does not connect to any other edges. However, level set based segmentation methods are only able to capture edge structures which contain the first two types of segments. In this work, we propose an extension to the level set based image segmentation method in order to detect free endpoint structures. By generalizing the curve representation used in Chan and Vese (Trans. Image Proces. 10(2):266–277, 2001; Int. J. Comput. Vis. 50(3):271–293, 2002) to also include free endpoint structures, we are able to segment a larger class of edge types. Since our model is formulated using the level set framework, the curve evolution inherits useful properties such as the ability to change its topology by splitting and merging. The numerical method is provided as well as experimental results on both synthetic and real images.
Similar content being viewed by others
References
Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)
Bar, L., Sapiro, G.: Generalized Newton-Type methods for energy formulations in image processing. SIAM J. Imaging Sci. 2(2), 508 (2009)
Caselles, R., Kimmel, V., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)
Caselles, V., Morel, J.M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7, 376–386 (1999)
Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for Vector-Valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Chung, G., Vese, L.A.: Image segmentation using a multilayer level-set approach. Comput. Vis. Sci. 12(6), 267–285 (2008)
Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997)
Crandall, M.G., Evans, L.C., Gariepy, R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ. Equ. 13(2), 123–139 (2001)
Dal Maso, G., Morel, J.M., Solimini, S.: A variational method in image segmentation: Existence and approximation results. Acta Math. 168(1), 89–151 (1992)
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)
Evans, L.C., Yu, Y.: Various properties of solutions of the Infinity-Laplacian equation. Commun. Partial Differ. Equ. 30(9), 1401–1428 (2005)
Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108(4), 195–218 (1989)
Jung, M., Chung, G., Sundaramoorthi, G., Vese, L.A., Yuille, A.L.: Sobolev gradients and joint variational image segmentation, denoising, and deblurring. Proc. SPIE 7246(1), 72460I (2009), 13 pp.
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)
Kimmel, R., Bruckstein, A.M.: Regularized Laplacian zero crossings as optimal edge integrators. Int. J. Comput. Vis. 53, 225–243 (2001)
Lacoste, C., Descombes, X., Zerubia, J.: Unsupervised line network extraction in remote sensing using a polyline process. Pattern Recognit. 43(4), 1631–1641 (2010)
Larsen, C.J., Richardson, C.L., Sarkis, M.: A level set method for the mumford -Shah functional and fracture. Preprint serie A,Instituto. Nacional de Matemática Pura e Aplicada, Brazilian Ministry for Science and Technology (2008)
Liao, W.H., Vese, L., Huang, S.C., Bergsneider, M., Osher, S.: Computational anatomy and implicit object representation: a level set approach. In: Gee, J., Maintz, J., Vannier, M. (eds.) Biomedical Image Registration. Lecture Notes in Computer Science, vol. 2717, pp. 40–49. Springer, Berlin (2003)
Lu, G., Wang, P.: Inhomogeneous infinity Laplace equation. Adv. Math. 217(4), 1838–1868 (2008)
Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 412–423 (2008)
Morel, J.M., Solimini, S.: Segmentation of images by variational methods: a constructive approach. Rev. Mat. Univ. Complut. Madr. 1, 169–182 (1988)
Morel, J.M., Solimini, S.: Segmentation d’images par méthode variationnelle: une preuve constructive d’existence. C. R. Acad. Sci., Ser. 1 Math. 308(15), 465–470 (1989)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)
Neuberger, J.W.: Sobolev Gradients and Differential Equations. Springer, Berlin (2009)
Niemann, C., Bondarenko, A.S., Constantin, C.G., Everson, E.T., Flippo, K.A., Gaillard, S.A., Johnson, R.P., Letzring, S.A., Montgomery, D.S., Morton, L.A., Schaeffer, D.B., Shimada, T., Winske, D.: Collisionless shocks in a large magnetized laser-plasma plume. IEEE Trans. Plasma Sci. 39(11), 2406–2407 (2011)
Oberman, A.M.: A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comput. 74(251), 1217–1230 (2004)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)
Renka, R.J.: A simple explanation of the Sobolev gradient method (2006)
Richardson, W.B.: Sobolev gradient preconditioning for image-processing PDEs. Commun. Numer. Methods Eng. 24(6), 493–504 (2006)
Shen, J.: Piecewise h −1−h 0−h 1 images and the mumford-shah-Sobolev model for segmented image decomposition. Appl. Math. Res. Express 4, 2005 (2005)
Smereka, P.: Spiral crystal growth. Physica D: Nonlinear Phenom. 138(3–4), 282–301 (2000)
Sundaramoorthi, G., Yezzi, A., Mennucci, A.C.: Sobolev active contours. Int. J. Comput. Vis. 73(3), 345–366 (2007)
Tsai, A., Yezzi A, Jr., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)
Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)
Acknowledgements
This research was supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program and in part by the National Science Foundation Grant DMS 0714945 and CCF/ITR Expeditions Grant 0926127.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schaeffer, H., Vese, L. Active Contours with Free Endpoints. J Math Imaging Vis 49, 20–36 (2014). https://doi.org/10.1007/s10851-013-0437-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-013-0437-4