[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Active Contours with Free Endpoints

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Image segmentation methods with length regularized edge sets are known to have segments whose endpoints either terminate perpendicularly to the boundary of the domain, terminate at a triple junction where three segments connect, or terminate at a free endpoint where the segment does not connect to any other edges. However, level set based segmentation methods are only able to capture edge structures which contain the first two types of segments. In this work, we propose an extension to the level set based image segmentation method in order to detect free endpoint structures. By generalizing the curve representation used in Chan and Vese (Trans. Image Proces. 10(2):266–277, 2001; Int. J. Comput. Vis. 50(3):271–293, 2002) to also include free endpoint structures, we are able to segment a larger class of edge types. Since our model is formulated using the level set framework, the curve evolution inherits useful properties such as the ability to change its topology by splitting and merging. The numerical method is provided as well as experimental results on both synthetic and real images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bar, L., Sapiro, G.: Generalized Newton-Type methods for energy formulations in image processing. SIAM J. Imaging Sci. 2(2), 508 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Caselles, R., Kimmel, V., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  4. Caselles, V., Morel, J.M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7, 376–386 (1999)

    Article  MathSciNet  Google Scholar 

  5. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for Vector-Valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)

    Article  Google Scholar 

  6. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  7. Chung, G., Vese, L.A.: Image segmentation using a multilayer level-set approach. Comput. Vis. Sci. 12(6), 267–285 (2008)

    Article  MathSciNet  Google Scholar 

  8. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997)

    Article  Google Scholar 

  9. Crandall, M.G., Evans, L.C., Gariepy, R.F.: Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differ. Equ. 13(2), 123–139 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Dal Maso, G., Morel, J.M., Solimini, S.: A variational method in image segmentation: Existence and approximation results. Acta Math. 168(1), 89–151 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  12. Evans, L.C., Yu, Y.: Various properties of solutions of the Infinity-Laplacian equation. Commun. Partial Differ. Equ. 30(9), 1401–1428 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108(4), 195–218 (1989)

    Article  MATH  Google Scholar 

  14. Jung, M., Chung, G., Sundaramoorthi, G., Vese, L.A., Yuille, A.L.: Sobolev gradients and joint variational image segmentation, denoising, and deblurring. Proc. SPIE 7246(1), 72460I (2009), 13 pp.

    Article  Google Scholar 

  15. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  16. Kimmel, R., Bruckstein, A.M.: Regularized Laplacian zero crossings as optimal edge integrators. Int. J. Comput. Vis. 53, 225–243 (2001)

    Article  Google Scholar 

  17. Lacoste, C., Descombes, X., Zerubia, J.: Unsupervised line network extraction in remote sensing using a polyline process. Pattern Recognit. 43(4), 1631–1641 (2010)

    Article  MATH  Google Scholar 

  18. Larsen, C.J., Richardson, C.L., Sarkis, M.: A level set method for the mumford -Shah functional and fracture. Preprint serie A,Instituto. Nacional de Matemática Pura e Aplicada, Brazilian Ministry for Science and Technology (2008)

  19. Liao, W.H., Vese, L., Huang, S.C., Bergsneider, M., Osher, S.: Computational anatomy and implicit object representation: a level set approach. In: Gee, J., Maintz, J., Vannier, M. (eds.) Biomedical Image Registration. Lecture Notes in Computer Science, vol. 2717, pp. 40–49. Springer, Berlin (2003)

    Chapter  Google Scholar 

  20. Lu, G., Wang, P.: Inhomogeneous infinity Laplace equation. Adv. Math. 217(4), 1838–1868 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 412–423 (2008)

    Article  Google Scholar 

  22. Morel, J.M., Solimini, S.: Segmentation of images by variational methods: a constructive approach. Rev. Mat. Univ. Complut. Madr. 1, 169–182 (1988)

    MATH  MathSciNet  Google Scholar 

  23. Morel, J.M., Solimini, S.: Segmentation d’images par méthode variationnelle: une preuve constructive d’existence. C. R. Acad. Sci., Ser. 1 Math. 308(15), 465–470 (1989)

    MATH  MathSciNet  Google Scholar 

  24. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Neuberger, J.W.: Sobolev Gradients and Differential Equations. Springer, Berlin (2009)

    Google Scholar 

  26. Niemann, C., Bondarenko, A.S., Constantin, C.G., Everson, E.T., Flippo, K.A., Gaillard, S.A., Johnson, R.P., Letzring, S.A., Montgomery, D.S., Morton, L.A., Schaeffer, D.B., Shimada, T., Winske, D.: Collisionless shocks in a large magnetized laser-plasma plume. IEEE Trans. Plasma Sci. 39(11), 2406–2407 (2011)

    Article  Google Scholar 

  27. Oberman, A.M.: A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions. Math. Comput. 74(251), 1217–1230 (2004)

    Article  MathSciNet  Google Scholar 

  28. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Renka, R.J.: A simple explanation of the Sobolev gradient method (2006)

  30. Richardson, W.B.: Sobolev gradient preconditioning for image-processing PDEs. Commun. Numer. Methods Eng. 24(6), 493–504 (2006)

    Article  Google Scholar 

  31. Shen, J.: Piecewise h −1h 0h 1 images and the mumford-shah-Sobolev model for segmented image decomposition. Appl. Math. Res. Express 4, 2005 (2005)

    Google Scholar 

  32. Smereka, P.: Spiral crystal growth. Physica D: Nonlinear Phenom. 138(3–4), 282–301 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sundaramoorthi, G., Yezzi, A., Mennucci, A.C.: Sobolev active contours. Int. J. Comput. Vis. 73(3), 345–366 (2007)

    Article  Google Scholar 

  34. Tsai, A., Yezzi A, Jr., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  35. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program and in part by the National Science Foundation Grant DMS 0714945 and CCF/ITR Expeditions Grant 0926127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayden Schaeffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaeffer, H., Vese, L. Active Contours with Free Endpoints. J Math Imaging Vis 49, 20–36 (2014). https://doi.org/10.1007/s10851-013-0437-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0437-4

Keywords

Navigation