[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Ranking Star-Shaped Valued Mappings with Respect to Shape Variability

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The study of shapes is a difficult topic, but it is becoming more and more important as computer vision techniques are already crucial in many research fields. Concretely, the variability of shapes is the basis for many criteria of symptom definition in medical diagnosis. This article introduces a stochastic order to address the variability of star-shaped sets. The main properties of the order are analyzed. An example of an application to hypothesis testing in medical diagnosis is also provided. Namely, we study if there are significant differences between healthy and diseased corneal endothelia with respect to cell shapes by means of ocular images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Systems & Control: Foundations & Applications, vol. 2. Birkhäuser, Boston (1990)

    Google Scholar 

  2. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  3. Carleos, C.: R scripts for star-shaped variability. ftp://carleos.epv.uniovi.es/stelforma (2011)

  4. Carleos, C., Fernández, D.: Evaluador de formas bidimensionales. http://evafo2d.sf.net (2011)

  5. Carleos, C., López-Díaz, M.: A new family of dispersive orderings. Metrika 71, 203–217 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carleos, C., López-Díaz, M.C., López-Díaz, M.: A stochastic order of shape variability with an application to cell nuclei involved in mastitis. J. Math. Imaging Vis. 38, 95–107 (2010)

    Article  Google Scholar 

  7. Davies, R., Twining, C., Taylor, C.: Statistical Models of Shape: Optimization and Evaluation. Springer, New York (2008)

    Google Scholar 

  8. Díaz, M., Ayala, G., Quesada, S., Martínez-Costa, L.: Testing abnormality in the spatial arrangement of cells in the corneal endothelium by using spatial point processes. Stat. Med. 20, 3429–3439 (2001)

    Article  Google Scholar 

  9. Domingo, J., Ayala, G., Díaz, M.: Morphometric analysis of human corneal endothelium by means of spatial point patterns. Int. J. Pattern Recognit. Artif. Intell. 16, 127–143 (2002)

    Article  Google Scholar 

  10. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (1998)

    MATH  Google Scholar 

  11. Fernández-Ponce, J.M., Suárez-Lloréns, A.: An aging concept based on majorization. Probab. Eng. Inf. Sci. 17, 107–117 (2003)

    Article  MATH  Google Scholar 

  12. Gavet, Y.: Cornea Endothelium Specular. http://en.wikipedia.org/wiki/File:Cornea_endothelium_specular.jpg (2006)

  13. Giovagnoli, A., Wynn, H.P.: Multivariate dispersion orderings. Stat. Probab. Lett. 22, 325–332 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Klain, D.A.: Invariant valuations on star-shaped sets. Adv. Math. 125, 95–113 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lehmann, E.L.: Nonparametrics: Statistical Methods Based on Ranks, Revised. Prentice-Hall, New York (1998)

    Google Scholar 

  16. López-Díaz, M.: Some remarks on L p dispersion orderings. Stat. Probab. Lett. 80, 413–420 (2010)

    Article  MATH  Google Scholar 

  17. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley Series in Probability and Statistics. Wiley, Chichester (2002)

    MATH  Google Scholar 

  18. Pollard, D.: Convergence of Stochastic Processes. Springer Series in Statistics. Springer, New York (1984)

    Book  MATH  Google Scholar 

  19. Roberts, A.W., Varberg, D.E.: Convex Functions. Pure and Applied Mathematics, vol. 57. Academic Press, New York (1973)

    MATH  Google Scholar 

  20. Schmid, F., Trede, M.: A distribution free test for the two sample problem for general alternatives. Comput. Stat. Data Anal. 20, 409–419 (1995)

    Article  MATH  Google Scholar 

  21. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007)

    Book  MATH  Google Scholar 

  22. Slomianka, L.: Blue histologie. http://www.lab.anhb.uwa.edu.au/mb140/Big/thumbs/cor20he.jpg (2009)

  23. Small, C.G.: The Statistical Theory of Shape. Springer, New York (1996)

    Book  MATH  Google Scholar 

  24. Zapater, V., Martínez-Costa, L., Ayala, G., Domingo, J.: Classifying human corneal endothelial cells based on individual granulometric size distributions. Image Vis. Comput. 20, 783–791 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Guillermo Ayala (Universidad de Valencia) and Lucía Martínez-Costa (Hospital Dr. Peset, Servicio de Oftalmología, Valencia) for helping us in obtaining data for application and for suggesting the idea of shape variability stochastic order.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Concepción López-Díaz.

Additional information

The authors are in debt to the Spanish Ministry of Science and Technology since this research is financed by Grants MTM2010-18370, MTM2011-22993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carleos, C., López-Díaz, M.C. & López-Díaz, M. Ranking Star-Shaped Valued Mappings with Respect to Shape Variability. J Math Imaging Vis 48, 1–12 (2014). https://doi.org/10.1007/s10851-012-0381-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0381-8

Keywords

Navigation