Abstract
This paper presents two novel interdependent techniques for random digital simple curve generation. The first one is about generating a curve of finite length, producing a sequence of points defining a digital path ρ ‘on the fly’. The second is for the creation of artistic sketches from line drawings and edge maps, using multiple instances of such random digital paths. A generated digital path ρ never intersects or touches itself, and hence becomes simple and irreducible. This is ensured by detecting every possible trap formed by the previously generated part of ρ, which, if entered into, cannot be exited without touching or intersecting ρ. The algorithm is completely free of any backtracking and its time complexity is linear in the length of ρ. For artistic emulation, a curve-constrained domain is defined by the Minkowski sum of the input drawing with a structuring element whose size varies with the pencil diameter. An artist’s usual trait of making irregular strokes and sub-strokes, with varying shades while sketching, is thus captured in a realistic manner. Algorithmic solutions of non-photorealism are perceived as an enrichment of contemporary digital art. Simulation results for the presented algorithms have been furnished to demonstrate their efficiency and elegance.
Similar content being viewed by others
Notes
A free path from a cell c i to a cell c i+k , k>1, is given by a sequence of cells, ρ(c i ,c i+k )=〈c i ,c i+1,…,c i+k 〉, such that each cell in 〈c i+1,…,c i+k−1〉 is free and distinct, and every two consecutive cells in ρ(c i ,c i+k ) are 1-adjacent.
As mentioned in Sect. 2, the directional label δ(c) provides only an interim value, since δ(c) may be updated when ρ visits some other cell(s) in A 0(c) later on.
For example, in Fig. 4(b), for \(c_{i+2}=c^{(2)}_{i+1}\), E i+1 is a hole; for \(c_{i+2}=c^{(4)}_{i+1}\) or \(c^{(6)}_{i+1}\), E i+1 is an ensuing hole as \(\delta(c^{(2)}_{i+1})\) changes from L to B.
If p i happens to be a grid point, then we shift it to the left/right/top/bottom of its actual position by one pixel so that it is strictly an edge-point.
References
Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Proc. 8th Canad. Conf. Comput. Geom, pp. 38–44 (1996)
Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1590–1602 (2007)
Bhowmick, P., Pal, O., Klette, R.: A linear-time algorithm for generation of random digital curves. In: IEEE Proc. PSIVT, pp. 168–173 (2010)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Curtis, C.J., Anderson, S.E., Seims, J.E., Fleischer, K.W., Salesin, D.H.: Computer-generated watercolor. In: Proc. SIGGRAPH, pp. 421–430 (1997)
Debled-Rennesson, I., Jean-Luc, R., Rouyer-Degli, J.: Segmentation of discrete curves into fuzzy segments. In: Proc. IWCIA. Electronic Notes in Discrete Mathematics, vol. 12, pp. 372–383 (2003)
Debled-Rennesson, I., Reveilles, J.P.: A linear algorithm for segmentation of digital curves. Int. J. Pattern Recognit. Artif. Intell. 9, 635–662 (1995)
Deussen, O.: Oliver’s artistic attempts (random line). graphics.uni-konstanz.de/artlike (2010)
Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322(8), 549–560 (1905)
Einstein, A.: In: Investigations on the Theory of Brownian Movement. Dover Publications, New York (reprinted in 1926)
Epstein, P., Sack, J.-R.: Generating triangulations at random. ACM Trans. Model. Comput. Simul. 4(3), 267–278 (1994)
Finch, S.: Pòlya’s random walk constant. In: Mathematical Constants, pp. 322–333. Cambridge University Press, Cambridge (2003). Section 5,9
Gooch, B., Gooch, A.: Non-photorealistic Rendering. A.K. Peters Ltd., New York (2001)
Kang, H.W., Chui, C.K., Chakraborty, U.K.: A unified scheme for adaptive stroke-based rendering. Vis. Comput. 22(9), 814–824 (2006)
Kang, H.W., He, W., Chui, C.K., Chakraborty, U.K.: Interactive sketch generation. Vis. Comput. 21(8), 821–830 (2005)
Klette, R., Rosenfeld, A.: Digital geometry: geometric methods for digital picture analysis. In: Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco (2004)
Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M., Lischinski, D.: Deep photo: model-based photograph enhancement and viewing. In: Proc. SIGGRAPH Asia, pp. 1–10 (2008)
Lake, A., Marshall, C., Harris, M., Blackstein, M.: Stylized rendering techniques for scalable real-time 3d animation. In: ACM Proc. NPAR, pp. 13–20 (2000)
Majumder, A., Gopi, M.: Hardware accelerated real time charcoal rendering. In: ACM Proc. NPAR, pp. 59–66 (2002)
Mieghem, J.A.V., Avi-Itzhak, H.I., Melen, R.D.: Straight line extraction using iterative total least squares methods. J. Vis. Commun. Image Represent. 6, 59–68 (1995)
Mould, D.: A stained glass image filter. In: Proc. EGRW, pp. 20–25 (2003)
Olsen, L., Samavati, F.F., Sousa, M.C., Jorge, J.A.: Sketch-based modeling: a survey. Comput. Graph. 33(1), 85–103 (2009)
Pòlya, G.: Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Math. Ann. 84(1–2), 149–160 (1921)
Pusch, R., Samavati, F., Nasri, A., Wyvill, B.: Improving the sketch-based interface: forming curves from many small strokes. Vis. Comput. 23(9), 955–962 (2007)
Rosenfeld, A., Kak, A.C.: Digital Picture Processing, 2nd edn. Academic Press, New York (1982)
Rosenfeld, A., Klette, R.: Digital straightness. Electronic Notes in Theoretical Computer Sc. vol. 46 (2001). www.elsevier.nl/locate/entcs/volume46.html
Rourke, J., Virmani, M.: Generating random polygons. TR 011, CS Dept., Smith College, Northampton, MA 01063 (1991)
Roy, S., Chatterjee, R., Bhowmick, P., Klette, R.: MAESTRO: making art-enabled sketches through randomized operations. In: Proc. CAIP, pp. 318–326 (2011)
Rudolf, D., Mould, D., Neufeld, E.: Simulating wax crayons. In: IEEE Proc. Pacific Conf. Computer Graphics Applications, pp. 163–172 (2003)
Smeulders, A.W.M., Dorst, L.: Decomposition of discrete curves into piecewise segments in linear time. Contemp. Math. 119, 169–195 (1991)
Velho, L., Gomes, J.d.M.: Digital halftoning with space filling curves. SIGGRAPH Comput. Graph. 25(4), 81–90 (1991)
Verevka, O., Buchanan, J.W.: Halftoning with image-based dither screens. In: Proc. Conf. Graphics Interface, pp. 167–174 (1999)
Zhu, C., Sundaram, G., Snoeyink, J., Mitchell, J.S.B.: Generating random polygons with given vertices. Comput. Geom. 6(5), 277–290 (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bhowmick, P., Klette, R. Generation of Random Digital Simple Curves with Artistic Emulation. J Math Imaging Vis 48, 53–71 (2014). https://doi.org/10.1007/s10851-012-0388-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-012-0388-1