Abstract
The aim of this paper is to describe a general framework for texture analysis which we refer to as the HEP (histograms of equivalent patterns). The HEP, of which we give a clear and unambiguous mathematical definition, is based on partitioning the feature space associated to image patches of predefined shape and size. This task is approached by defining, a priori, suitable local or global functions of the pixels’ intensities. In a comprehensive survey we show that diverse texture descriptors, such as co-occurrence matrices, gray-level differences and local binary patterns, can be seen all to be examples of the HEP. In the experimental part we comparatively evaluate a comprehensive set of these descriptors on an extensive texture classification task. Within the class of HEP schemes, improved local ternary patterns (ILTP) and completed local binary patterns (CLBP) emerge as the best of parametric and non-parametric methods, respectively. The results also show the following patterns: (1) higher effectiveness of multi-level discretization in comparison with binarization; (2) higher accuracy of parametric methods when compared to non-parametric ones; (3) a general trend of increasing performance with increasing dimensionality; and (4) better performance of point-to-average thresholding against point-to-point thresholding.
Similar content being viewed by others
References
Arndt, J.: Matters Computational: Ideas, Algorithms, Source Code. Springer, Berlin (2010)
Austin, J.: Grey scale N tuple processing. In: Kittler, J. (ed.) Pattern Recognition: 4th International Conference. Lecture Notes in Computer Science, vol. 301, pp. 110–120. Springer, Berlin (1988)
Beck, M., Robins, S.: Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra. Springer, New York (2007)
Bianconi, F., Fernández, A., González, E., Ribas, F.: Texture classification through combination of sequential colour texture classifiers. In: Rueda, L., Mery, D., Kittler, J. (eds.) Progress in Pattern Recognition, Image Analysis and Applications. Proceedings of the 12th Iberoamerican Congress on Pattern Recognition (CIARP 2007). Lecture Notes in Computer Science, vol. 4756, pp. 231–240. Springer, Berlin (2008). doi:10.1007/978-3-540-76725-1_25
Bianconi, F., Fernández, A., González, E., Caride, D., Calviño, A.: Rotation-invariant colour texture classification through multilayer CCR. Pattern Recognit. Lett. 30(8), 765–773 (2009). doi:10.1016/j.patrec.2009.02.006
Bianconi, F., Harvey, R., Southam, P., Fernández, A.: Theoretical and experimental comparison of different approaches for color texture classification. J. Electron. Imaging 20(4), 006 (2011). doi:10.1117/1.3651210
Bianconi, F., Fernández, A.: On the occurrence probability of local binary patterns: a theoretical study. J. Math. Imaging Vis. 40(3), 259–268 (2011). doi:10.1007/s10851-011-0261-7
Bonn BTF database (2003). Available online at http://cg.cs.uni-bonn.de/en/projects/btfdbb/download/
Bradley, A., Jackway, P., Lovell, B.: Classification in scale-space: applications to texture analysis. In: Proceedings of the 14th International Conference on Information Processing in Medical Imaging (IMPI’95), Ile de Berder, France, pp. 375–376 (1995)
Brodatz, P.: Textures: a Photographic Album for Artists and Designers. Dover, New York (1966)
Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. II, pp. 1597–1604 (2005)
Carstensen, J.M.: Cooccurrence feature performance in texture classification. In: Proceedings of the 8th Scandinavian Conference on Image Analysis (SCIA 1993), Tromsø, Norway, pp. 831–838 (1993)
Chang, C.I., Chen, Y.: Gradient texture unit coding for texture analysis. Opt. Eng. 43(8), 1891–1902 (2004)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
Chen, Y., Chang, C.I.: A new application of texture unit coding to mass classification for mammograms. In: Proceedings of IEEE International Conference on Image Processing, 2004 (ICIP’04), vol. 5, pp. 3335–3338 (2004). doi:10.1109/ICIP.2004.1421828
Crosier, M., Griffin, L.D.: Using basic image features for texture classification. Int. J. Comput. Vis. 88, 447–460 (2010). doi:10.1007/s11263-009-0315-0
Daugman, J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2, 1160–1169 (1985)
Davies, E.R.: Introduction to texture analysis. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of texture analysis, pp. 1–31. Imperial College Press, London (2008)
Dell’Acqua, F., Gamba, P.: Discriminating urban environments using multiscale texture and multiple SAR images. Int. J. Remote Sens. 17(18), 3797–3812 (2006)
Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I, 3rd edn. Wiley, New York (1968)
Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P.F.: Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Mach. Vis. Appl. 22(6), 913–926 (2011). doi:10.1007/s00138-010-0253-4
Fernández, A., Álvarez, M.X., Bianconi, F.: Image classification with binary gradient contours. Opt. Lasers Eng. 49(9–10), 1177–1184 (2011). doi:10.1016/j.optlaseng.2011.05.003
Fröba, B., Ernst, A.: Face detection with the modified census transform. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR 2004), pp. 91–96 (2004)
Fu, X., Wei, W.: Centralized binary patterns embedded with image euclidean distance for facial expression recognition. In: Proceedings of the Fourth International Conference on Natural Computation (ICNC’08), vol. 4, pp. 115–119 (2008)
Ghita, O., Ilea, D.E., Fernández, A., Whelan, P.F.: Local binary patterns versus signal processing texture analysis. A study from a performance evaluation perspective. Sens. Rev. 32, 149–162 (2012). doi:10.1108/02602281211209446
Gong, P., Marceau, D.J., Howarth, P.J.: A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sens. Environ. 40, 137–151 (1992)
Gool, L.V., Dewaele, P., Oosterlinck, A.: Texture analysis anno 1983. Comput. Vis. Graph. Image Process. 29(3), 336–3570 (1985). doi:10.1016/0734-189X(85)90130-6
Gotlieb, C.C., Kreyszig, H.E.: Texture descriptors based on co-occurrence matrices. Comput. Vis. Graph. Image Process. 51(1), 70–86 (1990). doi:10.1016/S0734-189X(05)80063-5
Griffin, L., Lillholm, M.: Hypotheses for image features, icons and textons. Int. J. Comput. Vis. 70, 213–230 (2006)
Griffin, L.D.: Private communication (2012)
Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)
Guo, Z., Lin, Q., You, J., Zhang, D., Liu, W.: Local directional derivative pattern for rotation invariant texture classification. Neural Comput. Appl. 1–12 (2011). doi:10.1007/s00521-011-0586-6. Published online 19 April 2011
Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary pattern for textures classification. In: Proceedings of the 4th International Conference on Image Analysis and Recognition (ICIAR 2007), Montreal, Canada. Lecture Notes in Computer Science, vol. 4633, pp. 387–398 (2007)
Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)
Harwood, D., Ojala, T., Pietikäinen, M., Kelman, S., Davis, L.S.: Texture classification by center-symmetric auto-correlation, using Kullback discrimination of distributions. Technical report CAR-TR-678, Center for Automation Research, University of Maryland (1993)
Hauth, M., Etzmuss, O., Eberhardt, B., Klein, R., Sarlette, R., Sattler, M., Daubert, K., Kautz, J.: Cloth animation and rendering. In: Proceedings of Eurographics 2002 Tutorials. Eurographics Association, Aire-la-Ville (2002)
Hayman, E., Caputo, B., Fritz, M., Eklundh, J.O.: On the significance of real-world conditions for material classification. In: Proceedings of the 8th European Conference on Computer Vision (ECCV 2004), Prague, Czech Republic. Lecture Notes in Computer Science, vol. 3024, pp. 253–266. Springer, Berlin (2004)
He, D.C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci. Remote Sens. 28(4), 509–512 (1990)
He, D.C., Wang, L.: Texture features based on texture spectrum. Pattern Recognit. 24(5), 391–399 (1991)
He, D.C., Wang, L.: Unsupervised textural classification of images using the texture spectrum. Pattern Recognit. 25(3), 247–255 (1992)
He, Y., Sang, N.: Robust illumination invariant texture classification using gradient local binary patterns. In: Proceedings of 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, Xiamen, China, pp. 1–6 (2011)
Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with center-symmetric local binary patterns. In: Kalra, P.K., Peleg, S. (eds.) Proceedings of the 5th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP 2006), Madurai, India. Lecture Notes in Computer Science, vol. 4338, pp. 58–69 (2006)
Heikkilä, J., Ojansivu, V., Rahtu, E.: Improved blur insensitivity for decorrelated local phase quantization. In: Proceedings of the 20th International Conference on Pattern Recognition (ICPR 2010), vol. 5099, pp. 818–821 (2010)
HEP: Code, data and results related to this paper (2012). Available online at. http://webs.uvigo.es/antfdez/downloads.html/
Hepplewhite, L., Stonhamm, T.J.: Texture classification using N-tuple pattern recognition. In: Proceedings of the 13th International Conference on Pattern Recognition (ICPR’96), vol. 4, pp. 159–163 (1996). doi:10.1109/ICPR.1996.547253
Huang, Y., Wang, Y., Tan, T.: Combining statistics of geometrical and correlative features for 3D face recognition. In: Proceedings of the 17th British Machine Vision Conference, pp. 879–888 (2006)
Huang, D., Ardabilian, M., Wang, Y., Chen, L.: A novel geometric facial representation based on multi-scale extended local binary patterns. In: Proceedings of the 9th IEEE International Conference on Automatic Face and Gesture Recognition and Workshops (FG 2011), pp. 1–7 (2011)
Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 41(6), 765–781 (2011)
Jerry Wu database (2003). Available online at http://www.macs.hw.ac.uk/texturelab/resources/databases/jwdb/
Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under Bayesian framework. In: Proceedings of the 3rd International Conference on Image and Graphics, pp. 306–309 (2004). doi:10.1109/ICIG.2004.62
Jin, H., Liu, Q., Tang, X., Lu, H.: Learning local descriptors for face detection. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 928–931. IEEE Comput. Soc., Los Alamitos (2005). doi:10.1109/ICME.2005.1521576
Junding, S., Shisong, Z., Xiaosheng, W.: Image retrieval based on an improved CS-LBP descriptor. In: Proceedings of the 2nd IEEE International Conference on Information Management and Engineering (ICIME), Chengdu, China, pp. 115–117 (2010)
Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, pp. 604–610 (2005)
Kandaswamy, U., Schuckers, S.A., Adjeroh, D.: Comparison of texture analysis schemes under nonideal conditions. IEEE Trans. Image Process. 20(8), 2260–2275 (2011)
Kim, K.I., Jung, K., Park, S.H., Kim, H.J.: Support vector machines for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1542–1550 (2002)
Kirsanova, E.N., Sadovsky, M.G.: Entropy approach in the analysis of anisotropy of digital images. Open Syst. Inf. Dyn. 84, 239–250 (2002)
KTH-TIPS and KTH-TIPS2 databases (2004). Available online at http://www.nada.kth.se/cvap/databases/kth-tips/
Kung, S.Y., Taur, J.S.: Decision-based neural networks with signal/image classification applications. IEEE Trans. Neural Netw. 6(1), 170–181 (1995). doi:10.1109/72.363439
Kunttu, I., Lepistö, L., Rauhamaa, J., Visa, A.: Image retrieval without segmentation. In: Proceedings of the 10th Finnish Artificial Intelligence Conference, pp. 164–169 (2002)
Kunttu, I., Lepistö, L., Rauhamaa, J., Visa, A.: Binary co-occurrence matrix in image database indexing. In: Proceedings of the 13th Scandinavian Conference on Image Analysis (SCIA 2003), Halmstad, Sweden. Lecture Notes in Computer Science, vol. 2749, pp. 1090–1097. Springer, Berlin (2003)
Kurmyshev, E.V., Cervantes, M.: A quasi-statistical approach to digital binary image representation. Rev. Mex. Fis. 42(1), 104–116 (1996)
Kurmyshev, E.V., Guillén-Bonilla, J.T.: Complexity reduced coding of binary pattern units in image classification. Opt. Lasers Eng. 49(6), 718–722 (2011)
Lategahn, H., Gross, S., Stehle, T., Aach, T.: Texture classification by modeling joint distributions of local patterns with Gaussian mixtures. IEEE Trans. Image Process. 19(6), 1548–1557 (2010)
Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)
LBP-Bibliography. Available online at http://www.ee.oulu.fi/mvg/page/lbp_bibliography/
Lee, A.B., Pedersen, K.S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54(1–3), 83–103 (2003)
Li, S., Kwok, J.T., Zhu, H., Wang, Y.: Texture classification using the support vector machines. Pattern Recognit. 36, 2883–2893 (2003)
Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18(5), 1107–1118 (2009)
Lindsey, C.S., Strömberg, M.: Image classification using the frequencies of simple features. Pattern Recognit. Lett. 21, 265–268 (2000)
Liu, L., Zhao, L., Longa, Y., Kuanga, G., Fieguth, P.: Extended local binary patterns for texture classification. Image Vis. Comput. 30(2), 86–99 (2012). doi:10.1016/j.imavis.2012.01.001
Madrid-Cuevas, F.J., Medina, R., Prieto, M., Fernández, N.L., Carmona, A.: Simplified texture unit: a new descriptor of the local texture in gray-level images. In: López, F.J.P., Campilho, A.C., de la Blanca, N.P., Sanfeliu, A. (eds.) Pattern Recognition and Image Analysis, Proceedings of the First Iberian Conference (IbPRIA 2003). Lecture Notes in Computer Science, vol. 2652, pp. 470–477. Springer, Berlin (2003)
Mondial Marmi database (2011). Available online at http://dismac.dii.unipg.it/mm/ver_1_1/index.html/
Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers, 2nd edn. Wiley, New York (1999)
Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)
Nanni, L., Brahnam, S., Lumini, A.: A local approach based on a Local Binary Patterns variant texture descriptor for classifying pain states. Expert Syst. Appl. 37(12), 7888–7894 (2010)
Nanni, L., Brahnam, S., Lumini, A.: Selecting the best performing rotation invariant patterns in local binary/ternary patterns. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV’10), Las Vegas, USA, pp. 369–375 (2010)
Nanni, L., Brahnam, S., Lumini, A.: Survey on LBP based texture descriptors for image classification. Expert Syst. Appl. 39(3), 3634–3641 (2012)
Nixon, M., Aguado, A.: Feature Extraction & Image Processing. Academic Press, Oxford (2008)
Ohanian, P.P., Dubes, R.C.: Performance evaluation for four classes of textural features. Pattern Recognit. 25(8), 819–833 (1992)
Oja, E., Valkealahti, K.: Co-occurrence map: quantizing multidimensional texture histograms. Pattern Recognit. Lett. 17(7), 723–730 (1996)
Ojala, T., Pietikäinen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 1, pp. 582–585 (1994). doi:10.1109/ICPR.1994.576366
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29(1), 51–59 (1996)
Ojala, T., Pietikäinen, M., Kyllönen, J.: Gray level cooccurrence histograms via learning vector quantization. In: Proceedings of the 11th Scandinavian Conference on Image Analysis (SCIA 1999), Kangerlussuaq, Greenland, pp. 103–108 (1999)
Ojala, T., Valkealahti, K., Oja, E., Pietikäinen, M.: Texture discrimination with multidimensional distributions of signed gray level differences. Pattern Recognit. 34, 727–739 (2001)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Ojala, T., Pietikäinen, M., Mäenpää, T., Viertola, J., Kyllönen, J., Huovinen, S.: Outex—new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), Quebec, Canada, vol. 1, pp. 701–706. IEEE Comput. Soc., Los Alamitos (2002)
Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Proceedings of the International Conference on Image and Signal Processing (ICISP 2008). Lecture Notes in Computer Science, vol. 5099, pp. 236–243. Springer, Berlin (2008)
OuTeX database (2002). Available online at http://www.outex.oulu.fi/
Paclík, P., Verzakov, S., Duin, R.P.W.: Improving the maximum-likelihood co-occurrence classifier: a study on classification of inhomogeneous rock images. In: Proceedings of the 14th Scandinavian Conference on Image Analysis (SCIA 2005). Lecture Notes in Computer Science, vol. 3540, pp. 998–1008. Springer, Berlin (2005)
Patel, D., Stonham, T.J.: A single layer neural network for texture discrimination. In: IEEE International Symposium on Circuits and Systems, 1991, vol. 5, pp. 2656–2660 (1991). doi:10.1109/ISCAS.1991.176092
Patel, D., Stonham, T.J.: Texture image classification and segmentation using rank-order clustering. In: Proceedings of the 11th International Conference on Pattern Recognition (ICPR’92), vol. 3, pp. 92–95. IEEE Comput. Soc., Los Alamitos (1992)
Patel, D., Stonham, T.J.: Unsupervised/supervised texture segmentation and its application to real-world data. In: Maragos, P. (ed.) Proceedings of SPIE’s Visual Communications and Image Processing’92, vol. 1818, pp. 1206–1217. SPIE, Boston (1992). doi:10.1117/12.131392
Patel, D., Stonham, T.J.: Segmentation of potash mine images using multi-layer perceptron networks. In: Proceedings of the Second International Conference on Automation, Robotics and Computer Vision (ICARCV’92), Singapore (1992)
Petrou, M., García, S.P.: Image Processing. Dealing with Texture. Wiley-Interscience, New York (2006)
Pietikäinen, M., Ojala, T., Nisula, J., Heikkinen, J.: Experiments with two industrial problems using texture classification based on feature distributions. In: Proceedings of SPIE, vol. 2354, pp. 197–204 (1994)
Qian, X., Hua, X.S., Cheng, P., Ke, L.: PLBP: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recognit. 44, 2502–2515 (2011)
Rajpoot, K.M., Rajpoot, N.M.: Wavelets and support vector machines for texture classification. In: Proceedings of 8th International Multitopic Conference (INMIC 2004), pp. 328–333 (2004)
Sabeenian, R.S., Dinesh, P.M.: Texture image classification using gray level weight matrix (GLWM). In: Proceedings of the Second International Conference on Advances in Power Electronics and Instrumentation Engineering (PEIE2011), Maharashtra, India. Communications in Computer and Information Sciences, vol. 148, pp. 263–266. Springer, Berlin (2011)
Sánchez-Yáñez, R.E., Kurmyshev, E.V., Cuevas, F.J.: A framework for texture classification using the coordinated clusters representation. Pattern Recognit. Lett. 24(1–3), 21–31 (2003). doi:10.1016/S0167-8655(02)00185-X
Sebe, N., Lew, M.: Robust Computer Vision. Theory and Applications. Kluwer Academic, Dordrecht (2003)
Singh, M., Singh, S.: Spatial texture analysis: a comparative study. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), vol. 1, pp. 676–679. IEEE Comput. Soc., Los Alamitos (2002). doi:10.1109/ICPR.2002.1044843
Smith, G., Burns, I.: Measuring texture classification algorithms. Pattern Recognit. Lett. 18(14), 1495–1501 (1997)
Sommerville, D.M.Y.: An Introduction to the Geometry of n Dimensions. Methuen, London (1929)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision, 3rd edn. Thompson, Washington (2005)
Suguna, R., Anandhakumar, P.: Multi-level local binary pattern analysis for texture characterization. Int. J. Comput. Sci. Netw. Secur. 10(4), 375–386 (2011)
Sun, H., Wang, C., Wang, B., El-Sheimy, N.: Pyramid binary pattern features for real-time pedestrian detection from infrared videos. Neurocomputing 74, 797–804 (2011)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Analysis and Modelling of Faces and Gestures. Lecture Notes in Computer Science, vol. 4778, pp. 168–182. Springer, Berlin (2007)
Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 207–248. World Scientific, Singapore (1998)
UIUCTex texture database (2005). Available online at http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/
Unser, M.: Sum and difference histograms for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(1), 118–125 (1986)
Unser, M.: Local linear transforms for texture measurements. Signal Process. 11(1), 61–79 (1986)
USC-SIPI image database (1977). Available online at http://sipi.usc.edu/database/
Valkealahti, K., Oja, E.: Reduced multidimensional co-occurrence histograms in texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 90–94 (1998)
Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03), vol. 2, pp. 691–698 (2003). doi:10.1109/CVPR.2003.1211534
Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)
Vickers, A.L., Modestino, J.W.: A maximum likelihood approach to texture classification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4(1), 61–68 (1982). doi:10.1109/TPAMI.1982.4767197
VisTex database (2002). Available online at http://vismod.media.mit.edu/vismod/imagery/VisionTexture/
Wang, L., He, D.C.: A new statistical approach for texture analysis. Photogramm. Eng. Remote Sens. 56(1), 61–66 (1990)
Wang, Y., Wei, X., Xiao, S.: LBP texture analysis based on the local adaptive Niblack algorithm. In: Proceedings of the Congress on Image and Signal Processing, 2008 (CISP’08), vol. 2, pp. 777–780 (2008)
Weszka, J.S., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Trans. Syst. Man Cybern. 6(4), 269–286 (1976)
Wiselin Jiji, G., Ganesan, L.: Comparative analysis of colour models for colour textures based on feature extraction. Int. J. Soft Comput. 2, 361–366 (2007)
Wiselin Jiji, G., Ganesan, L.: A new approach for unsupervised segmentation. Appl. Soft Comput. 10(3), 689–693 (2010)
Wiselin Jiji, G.: Colour texture classification for human tissue images. Appl. Soft Comput. 11(2), 1623–1630 (2011)
Wu, J.: Rotation invariant classification of 3D surface texture using photometric stereo. Ph.D. Thesis, Heriot-Watt University (2003)
Wu, X., Sun, J.: A brief study on a novel texture spectrum descriptor for material images. Appl. Mech. Mater. 63–64, 507–510 (2011)
Xiaosheng, W., Junding, S.: An effective texture spectrum descriptor. In: Proceedings of the 5th International Conference on Information Assurance and Security, (IAS 2009), Xi’an, China, vol. 2, pp. 361–364 (2009)
Xie, X., Mirmehdi, M.: A galaxy of texture features. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of texture analysis, pp. 375–406. Imperial College Press, London (2008)
Xu, B., Gong, P., Seto, E., Spear, R.: Comparison of gray-level reduction and different texture spectrum encoding methods for land-use classification using a panchromatic Ikonos image. Photogramm. Eng. Remote Sens. 69(5), 529–536 (2003)
Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Proceedings of the 3rd European Conference on Computer Vision (ECCV 1994), Stockholm, Sweden, pp. 151–158. Springer, Berlin (1994)
Zeng, H.: A robust method for local image feature region description. Acta Autom. Sinica 37(6), 658–664 (2011). In Chinese
Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2007)
Zhou, H., Wang, R., Wang, C.: A novel extended local-binary-pattern operator for texture analysis. Inf. Sci. 178(22), 4314–4325 (2008). doi:10.1016/j.ins.2008.07.015
Acknowledgements
This work was partially supported by Ministero dell’Istruzione, dell’Università e della Ricerca (Italy) and Mondial Marmi S.r.l. (Italy) within the research project no. 39554 entitled Expert system for automatic visual inspection of natural stone products and by the Spanish Government under projects no. TRA2011-29454-C03-01 and CTM2010-16573. The authors wish to thank Prof. Lewis Griffin of University College London for providing them with the Matlab ®implementation of basic image features.
Author information
Authors and Affiliations
Corresponding author
Additional information
F. Bianconi performed this work as a visiting researcher in the School of Industrial Engineering, University of Vigo, Spain.
Rights and permissions
About this article
Cite this article
Fernández, A., Álvarez, M.X. & Bianconi, F. Texture Description Through Histograms of Equivalent Patterns. J Math Imaging Vis 45, 76–102 (2013). https://doi.org/10.1007/s10851-012-0349-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-012-0349-8