[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Texture Description Through Histograms of Equivalent Patterns

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The aim of this paper is to describe a general framework for texture analysis which we refer to as the HEP (histograms of equivalent patterns). The HEP, of which we give a clear and unambiguous mathematical definition, is based on partitioning the feature space associated to image patches of predefined shape and size. This task is approached by defining, a priori, suitable local or global functions of the pixels’ intensities. In a comprehensive survey we show that diverse texture descriptors, such as co-occurrence matrices, gray-level differences and local binary patterns, can be seen all to be examples of the HEP. In the experimental part we comparatively evaluate a comprehensive set of these descriptors on an extensive texture classification task. Within the class of HEP schemes, improved local ternary patterns (ILTP) and completed local binary patterns (CLBP) emerge as the best of parametric and non-parametric methods, respectively. The results also show the following patterns: (1) higher effectiveness of multi-level discretization in comparison with binarization; (2) higher accuracy of parametric methods when compared to non-parametric ones; (3) a general trend of increasing performance with increasing dimensionality; and (4) better performance of point-to-average thresholding against point-to-point thresholding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arndt, J.: Matters Computational: Ideas, Algorithms, Source Code. Springer, Berlin (2010)

    Google Scholar 

  2. Austin, J.: Grey scale N tuple processing. In: Kittler, J. (ed.) Pattern Recognition: 4th International Conference. Lecture Notes in Computer Science, vol. 301, pp. 110–120. Springer, Berlin (1988)

    Google Scholar 

  3. Beck, M., Robins, S.: Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra. Springer, New York (2007)

    MATH  Google Scholar 

  4. Bianconi, F., Fernández, A., González, E., Ribas, F.: Texture classification through combination of sequential colour texture classifiers. In: Rueda, L., Mery, D., Kittler, J. (eds.) Progress in Pattern Recognition, Image Analysis and Applications. Proceedings of the 12th Iberoamerican Congress on Pattern Recognition (CIARP 2007). Lecture Notes in Computer Science, vol. 4756, pp. 231–240. Springer, Berlin (2008). doi:10.1007/978-3-540-76725-1_25

    Google Scholar 

  5. Bianconi, F., Fernández, A., González, E., Caride, D., Calviño, A.: Rotation-invariant colour texture classification through multilayer CCR. Pattern Recognit. Lett. 30(8), 765–773 (2009). doi:10.1016/j.patrec.2009.02.006

    Article  Google Scholar 

  6. Bianconi, F., Harvey, R., Southam, P., Fernández, A.: Theoretical and experimental comparison of different approaches for color texture classification. J. Electron. Imaging 20(4), 006 (2011). doi:10.1117/1.3651210

    Article  Google Scholar 

  7. Bianconi, F., Fernández, A.: On the occurrence probability of local binary patterns: a theoretical study. J. Math. Imaging Vis. 40(3), 259–268 (2011). doi:10.1007/s10851-011-0261-7

    Article  Google Scholar 

  8. Bonn BTF database (2003). Available online at http://cg.cs.uni-bonn.de/en/projects/btfdbb/download/

  9. Bradley, A., Jackway, P., Lovell, B.: Classification in scale-space: applications to texture analysis. In: Proceedings of the 14th International Conference on Information Processing in Medical Imaging (IMPI’95), Ile de Berder, France, pp. 375–376 (1995)

    Google Scholar 

  10. Brodatz, P.: Textures: a Photographic Album for Artists and Designers. Dover, New York (1966)

    Google Scholar 

  11. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. II, pp. 1597–1604 (2005)

    Chapter  Google Scholar 

  12. Carstensen, J.M.: Cooccurrence feature performance in texture classification. In: Proceedings of the 8th Scandinavian Conference on Image Analysis (SCIA 1993), Tromsø, Norway, pp. 831–838 (1993)

    Google Scholar 

  13. Chang, C.I., Chen, Y.: Gradient texture unit coding for texture analysis. Opt. Eng. 43(8), 1891–1902 (2004)

    Article  Google Scholar 

  14. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

    Article  Google Scholar 

  15. Chen, Y., Chang, C.I.: A new application of texture unit coding to mass classification for mammograms. In: Proceedings of IEEE International Conference on Image Processing, 2004 (ICIP’04), vol. 5, pp. 3335–3338 (2004). doi:10.1109/ICIP.2004.1421828

    Google Scholar 

  16. Crosier, M., Griffin, L.D.: Using basic image features for texture classification. Int. J. Comput. Vis. 88, 447–460 (2010). doi:10.1007/s11263-009-0315-0

    Article  MathSciNet  Google Scholar 

  17. Daugman, J.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2, 1160–1169 (1985)

    Article  Google Scholar 

  18. Davies, E.R.: Introduction to texture analysis. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of texture analysis, pp. 1–31. Imperial College Press, London (2008)

    Chapter  Google Scholar 

  19. Dell’Acqua, F., Gamba, P.: Discriminating urban environments using multiscale texture and multiple SAR images. Int. J. Remote Sens. 17(18), 3797–3812 (2006)

    Article  Google Scholar 

  20. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I, 3rd edn. Wiley, New York (1968)

    MATH  Google Scholar 

  21. Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P.F.: Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Mach. Vis. Appl. 22(6), 913–926 (2011). doi:10.1007/s00138-010-0253-4

    Article  Google Scholar 

  22. Fernández, A., Álvarez, M.X., Bianconi, F.: Image classification with binary gradient contours. Opt. Lasers Eng. 49(9–10), 1177–1184 (2011). doi:10.1016/j.optlaseng.2011.05.003

    Article  Google Scholar 

  23. Fröba, B., Ernst, A.: Face detection with the modified census transform. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition (FGR 2004), pp. 91–96 (2004)

    Chapter  Google Scholar 

  24. Fu, X., Wei, W.: Centralized binary patterns embedded with image euclidean distance for facial expression recognition. In: Proceedings of the Fourth International Conference on Natural Computation (ICNC’08), vol. 4, pp. 115–119 (2008)

    Chapter  Google Scholar 

  25. Ghita, O., Ilea, D.E., Fernández, A., Whelan, P.F.: Local binary patterns versus signal processing texture analysis. A study from a performance evaluation perspective. Sens. Rev. 32, 149–162 (2012). doi:10.1108/02602281211209446

    Article  Google Scholar 

  26. Gong, P., Marceau, D.J., Howarth, P.J.: A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sens. Environ. 40, 137–151 (1992)

    Article  Google Scholar 

  27. Gool, L.V., Dewaele, P., Oosterlinck, A.: Texture analysis anno 1983. Comput. Vis. Graph. Image Process. 29(3), 336–3570 (1985). doi:10.1016/0734-189X(85)90130-6

    Article  Google Scholar 

  28. Gotlieb, C.C., Kreyszig, H.E.: Texture descriptors based on co-occurrence matrices. Comput. Vis. Graph. Image Process. 51(1), 70–86 (1990). doi:10.1016/S0734-189X(05)80063-5

    Article  Google Scholar 

  29. Griffin, L., Lillholm, M.: Hypotheses for image features, icons and textons. Int. J. Comput. Vis. 70, 213–230 (2006)

    Article  Google Scholar 

  30. Griffin, L.D.: Private communication (2012)

  31. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  32. Guo, Z., Lin, Q., You, J., Zhang, D., Liu, W.: Local directional derivative pattern for rotation invariant texture classification. Neural Comput. Appl. 1–12 (2011). doi:10.1007/s00521-011-0586-6. Published online 19 April 2011

  33. Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary pattern for textures classification. In: Proceedings of the 4th International Conference on Image Analysis and Recognition (ICIAR 2007), Montreal, Canada. Lecture Notes in Computer Science, vol. 4633, pp. 387–398 (2007)

    Google Scholar 

  34. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  35. Harwood, D., Ojala, T., Pietikäinen, M., Kelman, S., Davis, L.S.: Texture classification by center-symmetric auto-correlation, using Kullback discrimination of distributions. Technical report CAR-TR-678, Center for Automation Research, University of Maryland (1993)

  36. Hauth, M., Etzmuss, O., Eberhardt, B., Klein, R., Sarlette, R., Sattler, M., Daubert, K., Kautz, J.: Cloth animation and rendering. In: Proceedings of Eurographics 2002 Tutorials. Eurographics Association, Aire-la-Ville (2002)

    Google Scholar 

  37. Hayman, E., Caputo, B., Fritz, M., Eklundh, J.O.: On the significance of real-world conditions for material classification. In: Proceedings of the 8th European Conference on Computer Vision (ECCV 2004), Prague, Czech Republic. Lecture Notes in Computer Science, vol. 3024, pp. 253–266. Springer, Berlin (2004)

    Google Scholar 

  38. He, D.C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci. Remote Sens. 28(4), 509–512 (1990)

    Article  Google Scholar 

  39. He, D.C., Wang, L.: Texture features based on texture spectrum. Pattern Recognit. 24(5), 391–399 (1991)

    Article  Google Scholar 

  40. He, D.C., Wang, L.: Unsupervised textural classification of images using the texture spectrum. Pattern Recognit. 25(3), 247–255 (1992)

    Article  MATH  Google Scholar 

  41. He, Y., Sang, N.: Robust illumination invariant texture classification using gradient local binary patterns. In: Proceedings of 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, Xiamen, China, pp. 1–6 (2011)

    Chapter  Google Scholar 

  42. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with center-symmetric local binary patterns. In: Kalra, P.K., Peleg, S. (eds.) Proceedings of the 5th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP 2006), Madurai, India. Lecture Notes in Computer Science, vol. 4338, pp. 58–69 (2006)

    Google Scholar 

  43. Heikkilä, J., Ojansivu, V., Rahtu, E.: Improved blur insensitivity for decorrelated local phase quantization. In: Proceedings of the 20th International Conference on Pattern Recognition (ICPR 2010), vol. 5099, pp. 818–821 (2010)

    Google Scholar 

  44. HEP: Code, data and results related to this paper (2012). Available online at. http://webs.uvigo.es/antfdez/downloads.html/

  45. Hepplewhite, L., Stonhamm, T.J.: Texture classification using N-tuple pattern recognition. In: Proceedings of the 13th International Conference on Pattern Recognition (ICPR’96), vol. 4, pp. 159–163 (1996). doi:10.1109/ICPR.1996.547253

    Chapter  Google Scholar 

  46. Huang, Y., Wang, Y., Tan, T.: Combining statistics of geometrical and correlative features for 3D face recognition. In: Proceedings of the 17th British Machine Vision Conference, pp. 879–888 (2006)

    Google Scholar 

  47. Huang, D., Ardabilian, M., Wang, Y., Chen, L.: A novel geometric facial representation based on multi-scale extended local binary patterns. In: Proceedings of the 9th IEEE International Conference on Automatic Face and Gesture Recognition and Workshops (FG 2011), pp. 1–7 (2011)

    Google Scholar 

  48. Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 41(6), 765–781 (2011)

    Article  Google Scholar 

  49. Jerry Wu database (2003). Available online at http://www.macs.hw.ac.uk/texturelab/resources/databases/jwdb/

  50. Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under Bayesian framework. In: Proceedings of the 3rd International Conference on Image and Graphics, pp. 306–309 (2004). doi:10.1109/ICIG.2004.62

    Google Scholar 

  51. Jin, H., Liu, Q., Tang, X., Lu, H.: Learning local descriptors for face detection. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 928–931. IEEE Comput. Soc., Los Alamitos (2005). doi:10.1109/ICME.2005.1521576

    Google Scholar 

  52. Junding, S., Shisong, Z., Xiaosheng, W.: Image retrieval based on an improved CS-LBP descriptor. In: Proceedings of the 2nd IEEE International Conference on Information Management and Engineering (ICIME), Chengdu, China, pp. 115–117 (2010)

    Google Scholar 

  53. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, pp. 604–610 (2005)

    Chapter  Google Scholar 

  54. Kandaswamy, U., Schuckers, S.A., Adjeroh, D.: Comparison of texture analysis schemes under nonideal conditions. IEEE Trans. Image Process. 20(8), 2260–2275 (2011)

    Article  MathSciNet  Google Scholar 

  55. Kim, K.I., Jung, K., Park, S.H., Kim, H.J.: Support vector machines for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1542–1550 (2002)

    Article  Google Scholar 

  56. Kirsanova, E.N., Sadovsky, M.G.: Entropy approach in the analysis of anisotropy of digital images. Open Syst. Inf. Dyn. 84, 239–250 (2002)

    Article  Google Scholar 

  57. KTH-TIPS and KTH-TIPS2 databases (2004). Available online at http://www.nada.kth.se/cvap/databases/kth-tips/

  58. Kung, S.Y., Taur, J.S.: Decision-based neural networks with signal/image classification applications. IEEE Trans. Neural Netw. 6(1), 170–181 (1995). doi:10.1109/72.363439

    Article  Google Scholar 

  59. Kunttu, I., Lepistö, L., Rauhamaa, J., Visa, A.: Image retrieval without segmentation. In: Proceedings of the 10th Finnish Artificial Intelligence Conference, pp. 164–169 (2002)

    Google Scholar 

  60. Kunttu, I., Lepistö, L., Rauhamaa, J., Visa, A.: Binary co-occurrence matrix in image database indexing. In: Proceedings of the 13th Scandinavian Conference on Image Analysis (SCIA 2003), Halmstad, Sweden. Lecture Notes in Computer Science, vol. 2749, pp. 1090–1097. Springer, Berlin (2003)

    Google Scholar 

  61. Kurmyshev, E.V., Cervantes, M.: A quasi-statistical approach to digital binary image representation. Rev. Mex. Fis. 42(1), 104–116 (1996)

    MathSciNet  Google Scholar 

  62. Kurmyshev, E.V., Guillén-Bonilla, J.T.: Complexity reduced coding of binary pattern units in image classification. Opt. Lasers Eng. 49(6), 718–722 (2011)

    Article  Google Scholar 

  63. Lategahn, H., Gross, S., Stehle, T., Aach, T.: Texture classification by modeling joint distributions of local patterns with Gaussian mixtures. IEEE Trans. Image Process. 19(6), 1548–1557 (2010)

    Article  MathSciNet  Google Scholar 

  64. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)

    Article  Google Scholar 

  65. LBP-Bibliography. Available online at http://www.ee.oulu.fi/mvg/page/lbp_bibliography/

  66. Lee, A.B., Pedersen, K.S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54(1–3), 83–103 (2003)

    Article  MATH  Google Scholar 

  67. Li, S., Kwok, J.T., Zhu, H., Wang, Y.: Texture classification using the support vector machines. Pattern Recognit. 36, 2883–2893 (2003)

    Article  MATH  Google Scholar 

  68. Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18(5), 1107–1118 (2009)

    Article  Google Scholar 

  69. Lindsey, C.S., Strömberg, M.: Image classification using the frequencies of simple features. Pattern Recognit. Lett. 21, 265–268 (2000)

    Article  Google Scholar 

  70. Liu, L., Zhao, L., Longa, Y., Kuanga, G., Fieguth, P.: Extended local binary patterns for texture classification. Image Vis. Comput. 30(2), 86–99 (2012). doi:10.1016/j.imavis.2012.01.001

    Article  Google Scholar 

  71. Madrid-Cuevas, F.J., Medina, R., Prieto, M., Fernández, N.L., Carmona, A.: Simplified texture unit: a new descriptor of the local texture in gray-level images. In: López, F.J.P., Campilho, A.C., de la Blanca, N.P., Sanfeliu, A. (eds.) Pattern Recognition and Image Analysis, Proceedings of the First Iberian Conference (IbPRIA 2003). Lecture Notes in Computer Science, vol. 2652, pp. 470–477. Springer, Berlin (2003)

    Google Scholar 

  72. Mondial Marmi database (2011). Available online at http://dismac.dii.unipg.it/mm/ver_1_1/index.html/

  73. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  74. Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)

    Article  Google Scholar 

  75. Nanni, L., Brahnam, S., Lumini, A.: A local approach based on a Local Binary Patterns variant texture descriptor for classifying pain states. Expert Syst. Appl. 37(12), 7888–7894 (2010)

    Article  Google Scholar 

  76. Nanni, L., Brahnam, S., Lumini, A.: Selecting the best performing rotation invariant patterns in local binary/ternary patterns. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV’10), Las Vegas, USA, pp. 369–375 (2010)

    Google Scholar 

  77. Nanni, L., Brahnam, S., Lumini, A.: Survey on LBP based texture descriptors for image classification. Expert Syst. Appl. 39(3), 3634–3641 (2012)

    Article  Google Scholar 

  78. Nixon, M., Aguado, A.: Feature Extraction & Image Processing. Academic Press, Oxford (2008)

    Google Scholar 

  79. Ohanian, P.P., Dubes, R.C.: Performance evaluation for four classes of textural features. Pattern Recognit. 25(8), 819–833 (1992)

    Article  Google Scholar 

  80. Oja, E., Valkealahti, K.: Co-occurrence map: quantizing multidimensional texture histograms. Pattern Recognit. Lett. 17(7), 723–730 (1996)

    Article  Google Scholar 

  81. Ojala, T., Pietikäinen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 1, pp. 582–585 (1994). doi:10.1109/ICPR.1994.576366

    Chapter  Google Scholar 

  82. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29(1), 51–59 (1996)

    Article  Google Scholar 

  83. Ojala, T., Pietikäinen, M., Kyllönen, J.: Gray level cooccurrence histograms via learning vector quantization. In: Proceedings of the 11th Scandinavian Conference on Image Analysis (SCIA 1999), Kangerlussuaq, Greenland, pp. 103–108 (1999)

    Google Scholar 

  84. Ojala, T., Valkealahti, K., Oja, E., Pietikäinen, M.: Texture discrimination with multidimensional distributions of signed gray level differences. Pattern Recognit. 34, 727–739 (2001)

    Article  MATH  Google Scholar 

  85. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  86. Ojala, T., Pietikäinen, M., Mäenpää, T., Viertola, J., Kyllönen, J., Huovinen, S.: Outex—new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), Quebec, Canada, vol. 1, pp. 701–706. IEEE Comput. Soc., Los Alamitos (2002)

    Google Scholar 

  87. Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Proceedings of the International Conference on Image and Signal Processing (ICISP 2008). Lecture Notes in Computer Science, vol. 5099, pp. 236–243. Springer, Berlin (2008)

    Google Scholar 

  88. OuTeX database (2002). Available online at http://www.outex.oulu.fi/

  89. Paclík, P., Verzakov, S., Duin, R.P.W.: Improving the maximum-likelihood co-occurrence classifier: a study on classification of inhomogeneous rock images. In: Proceedings of the 14th Scandinavian Conference on Image Analysis (SCIA 2005). Lecture Notes in Computer Science, vol. 3540, pp. 998–1008. Springer, Berlin (2005)

    Google Scholar 

  90. Patel, D., Stonham, T.J.: A single layer neural network for texture discrimination. In: IEEE International Symposium on Circuits and Systems, 1991, vol. 5, pp. 2656–2660 (1991). doi:10.1109/ISCAS.1991.176092

    Google Scholar 

  91. Patel, D., Stonham, T.J.: Texture image classification and segmentation using rank-order clustering. In: Proceedings of the 11th International Conference on Pattern Recognition (ICPR’92), vol. 3, pp. 92–95. IEEE Comput. Soc., Los Alamitos (1992)

    Google Scholar 

  92. Patel, D., Stonham, T.J.: Unsupervised/supervised texture segmentation and its application to real-world data. In: Maragos, P. (ed.) Proceedings of SPIE’s Visual Communications and Image Processing’92, vol. 1818, pp. 1206–1217. SPIE, Boston (1992). doi:10.1117/12.131392

    Google Scholar 

  93. Patel, D., Stonham, T.J.: Segmentation of potash mine images using multi-layer perceptron networks. In: Proceedings of the Second International Conference on Automation, Robotics and Computer Vision (ICARCV’92), Singapore (1992)

    Google Scholar 

  94. Petrou, M., García, S.P.: Image Processing. Dealing with Texture. Wiley-Interscience, New York (2006)

    Book  Google Scholar 

  95. Pietikäinen, M., Ojala, T., Nisula, J., Heikkinen, J.: Experiments with two industrial problems using texture classification based on feature distributions. In: Proceedings of SPIE, vol. 2354, pp. 197–204 (1994)

    Google Scholar 

  96. Qian, X., Hua, X.S., Cheng, P., Ke, L.: PLBP: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recognit. 44, 2502–2515 (2011)

    Article  Google Scholar 

  97. Rajpoot, K.M., Rajpoot, N.M.: Wavelets and support vector machines for texture classification. In: Proceedings of 8th International Multitopic Conference (INMIC 2004), pp. 328–333 (2004)

    Chapter  Google Scholar 

  98. Sabeenian, R.S., Dinesh, P.M.: Texture image classification using gray level weight matrix (GLWM). In: Proceedings of the Second International Conference on Advances in Power Electronics and Instrumentation Engineering (PEIE2011), Maharashtra, India. Communications in Computer and Information Sciences, vol. 148, pp. 263–266. Springer, Berlin (2011)

    Google Scholar 

  99. Sánchez-Yáñez, R.E., Kurmyshev, E.V., Cuevas, F.J.: A framework for texture classification using the coordinated clusters representation. Pattern Recognit. Lett. 24(1–3), 21–31 (2003). doi:10.1016/S0167-8655(02)00185-X

    Article  MATH  Google Scholar 

  100. Sebe, N., Lew, M.: Robust Computer Vision. Theory and Applications. Kluwer Academic, Dordrecht (2003)

    MATH  Google Scholar 

  101. Singh, M., Singh, S.: Spatial texture analysis: a comparative study. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR’02), vol. 1, pp. 676–679. IEEE Comput. Soc., Los Alamitos (2002). doi:10.1109/ICPR.2002.1044843

    Google Scholar 

  102. Smith, G., Burns, I.: Measuring texture classification algorithms. Pattern Recognit. Lett. 18(14), 1495–1501 (1997)

    Article  MATH  Google Scholar 

  103. Sommerville, D.M.Y.: An Introduction to the Geometry of n Dimensions. Methuen, London (1929)

    MATH  Google Scholar 

  104. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision, 3rd edn. Thompson, Washington (2005)

    Google Scholar 

  105. Suguna, R., Anandhakumar, P.: Multi-level local binary pattern analysis for texture characterization. Int. J. Comput. Sci. Netw. Secur. 10(4), 375–386 (2011)

    Google Scholar 

  106. Sun, H., Wang, C., Wang, B., El-Sheimy, N.: Pyramid binary pattern features for real-time pedestrian detection from infrared videos. Neurocomputing 74, 797–804 (2011)

    Article  Google Scholar 

  107. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Analysis and Modelling of Faces and Gestures. Lecture Notes in Computer Science, vol. 4778, pp. 168–182. Springer, Berlin (2007)

    Chapter  Google Scholar 

  108. Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 207–248. World Scientific, Singapore (1998)

    Google Scholar 

  109. UIUCTex texture database (2005). Available online at http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/

  110. Unser, M.: Sum and difference histograms for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(1), 118–125 (1986)

    Article  Google Scholar 

  111. Unser, M.: Local linear transforms for texture measurements. Signal Process. 11(1), 61–79 (1986)

    Article  MathSciNet  Google Scholar 

  112. USC-SIPI image database (1977). Available online at http://sipi.usc.edu/database/

  113. Valkealahti, K., Oja, E.: Reduced multidimensional co-occurrence histograms in texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 90–94 (1998)

    Article  Google Scholar 

  114. Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03), vol. 2, pp. 691–698 (2003). doi:10.1109/CVPR.2003.1211534

    Google Scholar 

  115. Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)

    Article  Google Scholar 

  116. Vickers, A.L., Modestino, J.W.: A maximum likelihood approach to texture classification. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4(1), 61–68 (1982). doi:10.1109/TPAMI.1982.4767197

    Article  Google Scholar 

  117. VisTex database (2002). Available online at http://vismod.media.mit.edu/vismod/imagery/VisionTexture/

  118. Wang, L., He, D.C.: A new statistical approach for texture analysis. Photogramm. Eng. Remote Sens. 56(1), 61–66 (1990)

    Google Scholar 

  119. Wang, Y., Wei, X., Xiao, S.: LBP texture analysis based on the local adaptive Niblack algorithm. In: Proceedings of the Congress on Image and Signal Processing, 2008 (CISP’08), vol. 2, pp. 777–780 (2008)

    Chapter  Google Scholar 

  120. Weszka, J.S., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Trans. Syst. Man Cybern. 6(4), 269–286 (1976)

    MATH  Google Scholar 

  121. Wiselin Jiji, G., Ganesan, L.: Comparative analysis of colour models for colour textures based on feature extraction. Int. J. Soft Comput. 2, 361–366 (2007)

    Google Scholar 

  122. Wiselin Jiji, G., Ganesan, L.: A new approach for unsupervised segmentation. Appl. Soft Comput. 10(3), 689–693 (2010)

    Article  Google Scholar 

  123. Wiselin Jiji, G.: Colour texture classification for human tissue images. Appl. Soft Comput. 11(2), 1623–1630 (2011)

    Article  Google Scholar 

  124. Wu, J.: Rotation invariant classification of 3D surface texture using photometric stereo. Ph.D. Thesis, Heriot-Watt University (2003)

  125. Wu, X., Sun, J.: A brief study on a novel texture spectrum descriptor for material images. Appl. Mech. Mater. 63–64, 507–510 (2011)

    Article  Google Scholar 

  126. Xiaosheng, W., Junding, S.: An effective texture spectrum descriptor. In: Proceedings of the 5th International Conference on Information Assurance and Security, (IAS 2009), Xi’an, China, vol. 2, pp. 361–364 (2009)

    Google Scholar 

  127. Xie, X., Mirmehdi, M.: A galaxy of texture features. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of texture analysis, pp. 375–406. Imperial College Press, London (2008)

    Chapter  Google Scholar 

  128. Xu, B., Gong, P., Seto, E., Spear, R.: Comparison of gray-level reduction and different texture spectrum encoding methods for land-use classification using a panchromatic Ikonos image. Photogramm. Eng. Remote Sens. 69(5), 529–536 (2003)

    Google Scholar 

  129. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Proceedings of the 3rd European Conference on Computer Vision (ECCV 1994), Stockholm, Sweden, pp. 151–158. Springer, Berlin (1994)

    Google Scholar 

  130. Zeng, H.: A robust method for local image feature region description. Acta Autom. Sinica 37(6), 658–664 (2011). In Chinese

    Google Scholar 

  131. Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2007)

    Article  Google Scholar 

  132. Zhou, H., Wang, R., Wang, C.: A novel extended local-binary-pattern operator for texture analysis. Inf. Sci. 178(22), 4314–4325 (2008). doi:10.1016/j.ins.2008.07.015

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Ministero dell’Istruzione, dell’Università e della Ricerca (Italy) and Mondial Marmi S.r.l. (Italy) within the research project no. 39554 entitled Expert system for automatic visual inspection of natural stone products and by the Spanish Government under projects no. TRA2011-29454-C03-01 and CTM2010-16573. The authors wish to thank Prof. Lewis Griffin of University College London for providing them with the Matlab ®implementation of basic image features.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fernández.

Additional information

F. Bianconi performed this work as a visiting researcher in the School of Industrial Engineering, University of Vigo, Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, A., Álvarez, M.X. & Bianconi, F. Texture Description Through Histograms of Equivalent Patterns. J Math Imaging Vis 45, 76–102 (2013). https://doi.org/10.1007/s10851-012-0349-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0349-8

Keywords

Navigation