Abstract
Sparsely connected autoassociative lattice memories (SCALMs) are very general models defined on complete lattices, a mathematical structure which is obtained by imposing some ordering on a set. They are computationally cheaper and mathematically simpler than “traditional” models and other memories such as the original autoassociative morphological memories (AMMs) of Ritter and Sussner because they only compute maximums and minimums. This paper provides theoretical results on SCALMs defined on a general complete lattice as well as an application of these memories for the storage and recall of color images. Precisely, we characterize the recall phase of SCALMs in terms of their fixed points. Then, we show that any endomorphic lattice polynomial—a concept that generalizes the notion of lattice polynomial of Birkhoff—on the fundamental memory set represents a fixed point of the SCALMs. Also, we discuss the relationship between SCALMs and the original AMMs. Finally, we provide some experimental results on the performance of SCALMs, defined on different color lattices, for the reconstruction of color images corrupted by either Gaussian or impulsive noise.
Similar content being viewed by others
References
Acharya, T., Ray, A.: Image Processing: Principles and Applications. Wiley, Hoboken (2005)
Agoston, M.K.: Computer Graphics and Geometric Modelling: Implementation & Algorithms, vol. 1. Springer, New York (2005)
Anderson, J., Silverstein, J., Ritz, S., Jones, R.: Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psychol. Rev. 84, 413–415 (1977)
Angulo, J.: Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis. Comput. Vis. Image Underst. 107(1–2), 56–73 (2007). Special issue on color image processing
Angulo, J., Serra, J.: Morphological coding of color images by vector connected filters. In: Proceedings of the Seventh International Symposium on Signal Processing and Its Applications, July 2003, vol. 1, pp. 69–72 (2003)
Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognit. 40(11), 2914–2929 (2007)
Aptoula, E., Lefèvre, S.: On lexicographical ordering in multivariate mathematical morphology. Pattern Recognit. Lett. 29(2), 109–118 (2008)
Austin, J.: Associative memory. In: Fiesler, E., Beale, R. (eds.) Handbook of Neural Computation, pp. F1.4:1–F1.4:7. Oxford University Press, London (1997)
Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1993)
Blyth, T.S.: Lattices and Ordered Algebraic Structures, 1st edn. Springer, Berlin (2005)
Cuninghame-Green, R.: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems, vol. 166. Springer, New York (1979)
Davidson, J.: Minimax techniques for non-linear image processing transforms. In: Technical Symposium on Optics, Electro-Optics, and Sensors, Orlando, FL, March 1989. Proceedings of SPIE, vol. 1098 (1989)
Fairchild, M.D.: Color Appearance Models, 2nd edn. Wiley, New York (2005)
Foley, J.D., Dam, A.V., Huges, J.F., Feiner, S.K.: Computer Graphics: Principles and Practice, 2nd edn. Addison-Wesley, Reading (1990)
Gawne, T.J., Martin, J.M.: Responses of primate visual cortical v4 neurons to simultaneously presented stimuli. J. Neurophysiol. 88(3), 1128–1135 (2002)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Upper Saddle River (2002)
Graña, M.: A brief review of lattice computing. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2008), Hong Kong, China, June 2008, pp. 1777–1781 (2008)
Graña, M., Villaverde, I., Maldonado, J., Hernandez, C.: Two lattice computing approaches for the unsupervised segmentation of hyperspectral images. Neurocomputing 72(10–12), 2111–2120 (2009)
Grätzer, G., et al.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (2003)
Hanbury, A., Serra, J.: Mathematical morphology in the HLS colour space. In: Proceedings of the 12th British Machine Vision Conference, pp. 451–460 (2001)
Hanbury, A., Serra, J.: Mathematical morphology in the L ∗ a ∗ b ∗ colour space. Tech. rep., Centre de Morphologie Mathématique, École des Mines de Paris, August 2001
Hassoun, M.H. (ed.): Associative Neural Memories: Theory and Implementation. Oxford University Press, Oxford (1993)
Heijmans, H.: Morphological Image Operators. Academic Press, New York (1994)
Heijmans, H.J.A.M.: Mathematical morphology: A modern approach in image processing based on algebra and geometry. SIAM Rev. 37(1), 1–36 (1995)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)
Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer, New York (1989)
Kong, S.-G., Kosko, B.: Adaptive fuzzy systems for backing up a truck-and-trailer. IEEE Trans. Neural Netw. 3(2), 211–223 (1992)
Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Prentice Hall, Englewood Cliffs (1992)
Levkowitz, H.: Color Theory and Modeling for Computer Graphics, Visualization, and Multimedia Applications. Kluwer Academic, Norwell (1997)
Levkowitz, H., Herman, G.T.: Glhs: A generalized lightness, hue, and saturation color model. CVGIP, Graph. Models Image Process. 55(4), 271–285 (1993)
Oh, C., Zak, S.H.: Image recall using a large scale generalized Brain-State-in-a-Box neural network. Int. J. Appl. Math. Comput. Sci. 15(1), 99–114 (2005)
Plataniotis, K., Androutsos, D., Venetsanopoulos, A.: Adaptive fuzzy systems for multichannel signal processing. Proc. IEEE 87(9), 1601–1622 (1999)
Poynton, C.: Frequently asked questions about color (1997)
Pratt, W.: Digital Image Processing. Wiley, New York (1978)
Ritter, G.X.: Image algebra. Unpublished manuscript. Available at: http://www.cise.ufl.edu/~jnw/CVAIIA/ (1997)
Ritter, G.X., Gader, P.: Fixed points of lattice transforms and lattice associative memories. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 144. Academic Press, New York (2006)
Ritter, G.X., Sussner, P.: An introduction to morphological neural networks. In: Proceedings of the 13th International Conference on Pattern Recognition Vienna, Austria, pp. 709–717 (1996)
Ritter, G.X., Sussner, P.: Morphological neural networks. In: Intelligent Systems: A Semiotic Perspective; Proceedings of the 1996 International Multidisciplinary Conference Gaithersburg, Maryland, pp. 221–226 (1996)
Ritter, G.X., Sussner, P.: Associative memories based on lattice algebra. In: Computational Cybernetics and Simulation, Orlando, Florida, 1997, IEEE International Conference on Systems, Man, and Cybernetics (1997)
Ritter, G.X., Urcid, G.: A lattice matrix method for hyperspectral image unmixing. Inf. Sci. 181(10), 1787–1803 (2011)
Ritter, G.X., Wilson, J.N.: Handbook of Computer Vision Algorithms in Image Algebra, 2nd edn. CRC Press, Boca Raton (2001)
Ritter, G.X., Wilson, J.N., Davidson, J.L.: Image algebra: An overview. Comput. Vis. Graph. Image Process. 49(3), 297–331 (1990)
Ritter, G.X., Sussner, P., de Leon, J.L.D.: Morphological associative memories. IEEE Trans. Neural Netw. 9(2), 281–293 (1998)
Ritter, G.X., Urcid, G., Iancu, L.: Reconstruction of patterns from noisy inputs using morphological associative memories. J. Math. Imaging Vis. 19(2), 95–111 (2003)
Ritter, G.X., Iancu, L., Schmalz, M.S.: A new auto-associative memory based on lattice algebra. In: Progress in Pattern Recognition, Image Analysis and Applications, 9th Iberoamerican Congress on Pattern Recognition, CIARP 2004. Lecture Notes in Computer Science, vol. 3287, pp. 148–155. Springer, Berlin (2004)
Ritter, G.X., Urcid, G., Schmalz, M.S.: Lattice associative memories that are robust in the presence of noise. In: Mathematical Methods in Pattern and Image Analysis. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5916, pp. 255–260. SPIE, Bellingham (2005)
Ritter, G.X., Urcid, G., Schmalz, M.S.: Autonomous single-pass endmember approximation using lattice auto-associative memories. Neurocomputing 72(10–12), 2101–2110 (2009)
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)
Serra, J.: Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances. Academic Press, New York (1988)
Sharma, G., Trussell, H.J.: Digital color imaging. IEEE Trans. Image Process. 6(7), 901–932 (1997)
Soille, P.: Morphological Image Analysis. Springer, Berlin (1999)
Sussner, P.: Fixed points of autoassociative morphological memories. In: Proceedings of the International ICSA/IFAC Symposium on Neural Computation, Berlin (2000)
Sussner, P.: Associative morphological memories based on variations of the kernel and dual kernel methods. Neural Netw. 16(5), 625–632 (2003)
Sussner, P., Esmi, E.L.: Morphological perceptrons with competitive learning: Lattice-theoretical framework and constructive learning algorithm. Inf. Sci. 181(10), 1929–1950 (2011)
Sussner, P., Valle, M.E.: Grayscale morphological associative memories. IEEE Trans. Neural Netw. 17(3), 559–570 (2006)
Sussner, P., Valle, M.E.: Implicative fuzzy associative memories. IEEE Trans. Fuzzy Syst. 14(6), 793–807 (2006)
Sussner, P., Valle, M.E.: Recall of patterns using morphological and certain fuzzy morphological associative memories. In: Proceedings of the IEEE World Conference on Computational Intelligence 2006, pp. 209–216, Vancouver, Canada (2006)
Sussner, P., Valle, M.E.: Fuzzy associative memories and their relationship to mathematical morphology. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 733–754. Wiley, New York (2008), Chap. 33
Sussner, P., Miyasaki, R., Valle, M.E.: An introduction to parameterized IFAM models with applications in prediction. In: Proceedings of the 2009 IFSA World Congress and 2009 EUSFLAT Conference, Lisbon, Portugal, July 2009, pp. 247–252 (2009)
Sussner, P., Esmi, E.L., Villaverde, I., Graña, M.: The Kosko subsethood fuzzy associative memory (KS-FAM): Mathematical background and applications in computer vision. J. Math. Imaging Vis. (2011). doi:10.1007/s10851-011-0292-0
Tang, K., Astola, J., Neuvo, Y.: Nonlinear multivariate image filtering techniques. IEEE Trans. Image Process. 4(6), 788–798 (1995)
Urcid, G., Ritter, G.X., Iancu, L.: Kernel computation in morphological bidirectional associative memories. In: Progress in Pattern Recognition, Speech and Image Analysis, 8th Iberoamerican Congress on Pattern Recognition, CIARP 2003. Lecture Notes in Computer Science, vol. 2095, pp. 563–570. Springer, Berlin (2003)
Urcid, G., Ritter, G.X., Nieves-V., J.A.: Redundant encoding of patterns in lattice associative memories. In: Proceedings of the Lattice Based Modeling Workshop, 6th International Conference on Concept Lattices and Their Applications Olomouc, Czech Republic, pp. 45–57 (2008)
Urcid, G., Nieves-V., J.A., Garcia-A., A., Valdiviezo-N., J.: Robust image retrieval from noisy inputs using lattice associative memories. In: Proceedings of SPIE—The International Society for Optical Engineering: Image Processing: Algorithms and Systems VII San Jose, CA, USA, vol. 7245, pp. 1–12 (2009)
Valle, M.E.: A class of sparsely connected autoassociative morphological memories for large color images. IEEE Trans. Neural Netw. 20(6), 1045–1050 (2009)
Valle, M.E., Sussner, P.: Fuzzy morphological associative memories based on uninorms. In: Proceedings of the IEEE World Conference on Computational Intelligence 2008 (WCCI 2008), Hong Kong, China, June 2008, pp. 1582–1589 (2008)
Valle, M.E., Sussner, P.: A general framework for fuzzy morphological associative memories. Fuzzy Sets Syst. 159(7), 747–768 (2008)
Valle, M.E., Sussner, P.: Storage and recall capabilities of fuzzy morphological associative memories with adjunction-based learning. Neural Netw. 24(1), 75–90 (2011)
Vandenbroucke, N., Macaire, L., Postaire, J.-G.: Color image segmentation by pixel classification in an adapted hybrid color space. Application to soccer image analysis. Comput. Vis. Image Underst. 90(2), 190–216 (2003)
Vazquez, R.A., Sossa, H.: A bidirectional hetero-associative memory for true-color patterns. Neural Process. Lett. 28(3), 131–153 (2008)
Vazquez, R.A., Sossa, H.: Morphological hetero-associative memories applied to restore true-color patterns. In: Proceedings of the 6th International Symposium on Neural Networks: Advances in Neural Networks—Part III. ISNN 2009, vol. 5553, pp. 520–529. Springer, Berlin (2009)
Yáñez-Márquez, C., Cruz-Meza, M.E., Sánchez-Garfias, F.A., López-Yáñez, I.: Using alpha-beta associative memories to learn and recall RGB images. In: Proceedings of the 4th international symposium on Neural Networks: Advances in Neural Networks, Part III. ISNN ’07, vol. 4493, pp. 828–833. Springer, Berlin (2007)
Zhang, D., Zuo, W.: Computational intelligence-based biometric technologies. IEEE Comput. Intell. Mag. 2(2), 26–36 (2007)
Zhang, B.-L., Zhang, H., Ge, S.S.: Face recognition by applying wavelet subband representation and kernel associative memory. IEEE Trans. Neural Netw. 15(1), 166–177 (2004)
Zhang, H., Huang, W., Huang, Z., Zhang, B.: A kernel autoassociator approach to pattern classification. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 35(3), 593–606 (2005)
Zheng, P., Zhang, J., Tang, W.: Color image associative memory on a class of Cohen–Grossberg networks. Pattern Recognit. 43(10), 3255–3260 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Valle, M.E., Grande Vicente, D.M. Sparsely Connected Autoassociative Lattice Memories with an Application for the Reconstruction of Color Images. J Math Imaging Vis 44, 195–222 (2012). https://doi.org/10.1007/s10851-011-0322-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-011-0322-y