[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Determining Digital Circularity Using Integer Intervals

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Digital circularity is a well-researched topic for its real-world practicality to circularity measure, estimation of discrete curvature, circular arc segmentation, etc. The proposed work reveals a novel technique to determine whether a digital curve segment is digitally circular using the correspondence of its constituent runs with the square numbers in integer intervals. The notion of radii nesting is used to successively analyze these runs of digital points. Two algorithms have been proposed along with their demonstrations and detailed analysis, and a simple-yet-effective solution has been provided to expedite them using infimum circle and supremum circles that bound the initial range of radii. We have also shown how the proposed technique can be used for segmentation of an arbitrary digital curve segment into a sequence of circular arcs. Experimental results have been given to demonstrate the efficiency and elegance of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695–706 (1994)

    Article  Google Scholar 

  2. Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Graph. 3(1), 75–86 (1997)

    Article  Google Scholar 

  3. Asano, T., Klette, R., Ronse, C. (eds.): Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616. Springer, Berlin (2003)

    MATH  Google Scholar 

  4. Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: Proc. 7th Annual Symposium on Computational Geometry (SCG 1991), pp. 162–165 (1991)

    Chapter  Google Scholar 

  5. Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Jorge, R.M.N., Tavares, J.M.R.S. (eds.) Computational Modeling of Objects Represented in Images, 2nd Intl. Symposium, CompIMAGE (2010). LNCS, vol. 6026. Springer, Berlin (2010)

    Google Scholar 

  6. Bera, S., Bhowmick, P., Bhattacharya, B.B.: Detection of circular arcs in a digital image using chord and sagitta properties. In: Extended Version of Proc. Eighth Intl. Workshop on Graphics Recognition (GREC 2009). LNCS, vol. 6020, pp. 69–80 (2010)

    Google Scholar 

  7. Bhowmick, P., Bhattacharya, B.B.: Number-theoretic interpretation and construction of a digital circle. Discrete Appl. Math. 156(12), 2381–2399 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20(2), 100–106 (1977)

    Article  MATH  Google Scholar 

  9. Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity—A review. Discrete Appl. Math. 155(4), 468–495 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theor. Comput. Sci. 283(1), 151–170 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput. Sci. 319(1–3), 203–227 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points in a hyperball. Theor. Comput. Sci. 406(1–2), 24–30 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chattopadhyay, S., Das, P.P., Ghosh-Dastidar, D.: Reconstruction of a digital circle. Pattern Recognit. 27(12), 1663–1676 (1994)

    Article  Google Scholar 

  14. Chiu, S.H., Liaw, J.J.: An effective voting method for circle detection. Pattern Recognit. Lett. 26(2), 121–133 (2005)

    Article  Google Scholar 

  15. Coeurjolly, D., Gérard, Y., Reveillès, J.-P., Tougne, L.: An elementary algorithm for digital arc segmentation. Discrete Appl. Math. 139, 31–50 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Coeurjolly, D., Miguet, S., Tougne, L.: Discrete curvature based on osculating circle estimation. In: IWVF-4: Proc. 4th Intl. Workshop Visual Form, pp. 303–312. Springer, London (2001)

    Google Scholar 

  17. Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.-M.: On digital plane preimage structure. Discrete Appl. Math. 151(1–3), 78–92 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Damaschke, P.: The linear time recognition of digital arcs. Pattern Recognit. Lett. 16, 543–548 (1995)

    Article  MATH  Google Scholar 

  19. Davies, E.: Machine Vision: Theory, Algorithms, Praticalities. Academic Press, London (1990)

    Google Scholar 

  20. Davies, E.R.: A modified Hough scheme for general circle location. Pattern Recognit. 7(1), 37–43 (1984)

    Google Scholar 

  21. Davies, E.R.: A high speed algorithm for circular object detection. Pattern Recognit. Lett. 6, 323–333 (1987)

    Article  Google Scholar 

  22. Debled-Rennesson, I., Reveilles, J.P.: A linear algorithm for segmentation of digital curves. Int. J. Pattern Recognit. Artif. Intell. 9, 635–662 (1995)

    Article  Google Scholar 

  23. Dori, D., Liu, W.: Sparse pixel vectorization: An algorithm and its performance evaluation. IEEE Trans. PAMI 21(3) (1999)

  24. Fisk, S.: Separating point sets by circles, and the recognition of digital disks. IEEE Trans. Pattern Anal. Mach. Intell. 8, 554–556 (1986)

    Article  Google Scholar 

  25. Foley, J.D., Dam, A.V., Feiner, S.K., Hughes, J.F.: Computer Graphics—Principles and Practice. Addison-Wesley, Reading (1993)

    Google Scholar 

  26. Foresti, G.L., Regazzoni, C.S., Vernazza, G.: Circular arc extraction by direct clustering in a 3D Hough parameter space. Signal Process. 41, 203–224 (1995)

    Article  MATH  Google Scholar 

  27. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. EC-10, 260–268 (1961)

    Article  MathSciNet  Google Scholar 

  28. Freeman, H.: Techniques for the digital computer analysis of chain-encoded arbitrary plane curves. In: Proc. National Electronics Conf., vol. 17, pp. 421–432 (1961)

    Google Scholar 

  29. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1993)

    Google Scholar 

  30. Haralick, R.M.: A measure for circularity of digital figures. IEEE Trans. Syst. Man Cybern. 4, 394–396 (1974)

    MATH  Google Scholar 

  31. Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 890–904 (2006)

    Article  Google Scholar 

  32. Ioannoua, D., Hudab, W., Lainec, A.: Circle recognition through a 2D Hough Transform and radius histogramming. Image Vis. Comput. 17, 15–26 (1999)

    Article  Google Scholar 

  33. Kim, C.: Digital disks. IEEE Trans. Pattern Anal. Mach. Intell. 6, 372–374 (1984)

    Article  MATH  Google Scholar 

  34. Kim, C.E., Anderson, T.A.: Digital disks and a digital compactness measure. In: Proc. 16th Annual ACM Symposium on Theory of Computing, pp. 117–124 (1984)

    Google Scholar 

  35. Kim, H.S., Kim, J.H.: A two-step circle detection algorithm from the intersecting chords. Pattern Recognit. Lett. 22(6–7), 787–798 (2001)

    Article  MATH  Google Scholar 

  36. Klette, R.: Digital geometry—The birth of a new discipline. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)

    Chapter  Google Scholar 

  37. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  38. Klette, R., Žunić, J.: Interactions between number theory and image analysis. In: Latecki, L.J., Mount, D.M., Wu, A.Y. (eds.) Proc. SPIE, Vision Geometry IX, vol. 4117, pp. 210–221 (2000)

    Google Scholar 

  39. Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)

    Google Scholar 

  40. Kovalevsky, V.A.: New definition and fast recognition of digital straight segments and arcs. In: Proc. 10th Intl. Conf. Pattern Recognition (ICPR), pp. 31–34. IEEE Comput. Soc., Los Alamitos (1990)

    Chapter  Google Scholar 

  41. Kulpa, Z., Kruse, B.: Algorithms for circular propagation in discrete images. Comput. Vis. Graph. Image Process. 24(3), 305–328 (1983)

    Article  Google Scholar 

  42. Lamiroy, B., Guebbas, Y.: Robust and precise circular arc detection. In: Extended Version of Proc. Eighth Intl. Workshop on Graphics Recognition (GREC 2009). LNCS, vol. 6020, pp. 49–60 (2010)

    Google Scholar 

  43. Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1185–1190 (2000)

    Article  Google Scholar 

  44. Leavers, V.: Survey: Which Hough transform? CVGIP, Image Underst. 58, 250–264 (1993)

    Article  Google Scholar 

  45. McIlroy, M.D.: A note on discrete representation of lines. AT&T Bell Lab. Tech. J. 64(2), 481–490 (1985)

    Google Scholar 

  46. Megiddo, N.: Linear time algorithm for linear programming in ℝ3 and related problems. SIAM J. Comput. 12, 759–776 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  47. Nakamura, A., Aizawa, K.: Digital circles. Comput. Vis. Graph. Image Process. 26(2), 242–255 (1984)

    Article  Google Scholar 

  48. Nakamura, A., Rosenfeld, A.: Digital calculus. Inf. Sci. 98, 83–98 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  49. Nguyen, T.P., Debled-Rennesson, I.: A linear method for segmentation of digital arcs. Rapport de recherche no 0001 (Centre de recherche INRIA Nancy), Feb. 2010

  50. Pitteway, M.L.V.: Algorithm for drawing ellipses or hyperbolae with a digital plotter. Comput. J. 10(3), 282–289 (1967)

    Article  Google Scholar 

  51. Richard, A., Wallet, G., Fuchs, L., Andres, E., Largeteau-Skapin, G.: Arithmetization of a circular arc. In: Proc. 15th IAPR International Conference on Discrete Geometry for Computer Imagery (DGCI ’09). LNCS, vol. 5810, pp. 350–361. Springer, Berlin (2009)

    Chapter  Google Scholar 

  52. Rodríguez, M., Abdoulaye, S., Largeteau-Skapin, G., Andres, E.: Generalized perpendicular bisector and circumcenter. In: Computational Modeling of Objects Represented in Images, 2nd Intl. Symposium, CompIMAGE (2010). LNCS, vol. 6026, pp. 1–10. Springer, Berlin (2010)

    Chapter  Google Scholar 

  53. Rosenfeld, A., Kak, A.C.: Digital Picture Processing, 2nd edn. Academic Press, New York (1982)

    Google Scholar 

  54. Roussillon, T., Sivignon, I., Tougne, L.: Measure of circularity for parts of digital boundaries and its fast computation. Pattern Recognit. 43(1), 37–46 (2010)

    Article  MATH  Google Scholar 

  55. Roussillon, T., Tougne, L., Sivignon, I.: On three constrained versions of the digital circular arc recognition problem. In: Proc. 15th IAPR International Conference on Discrete Geometry for Computer Imagery (DGCI ’09). LNCS, vol. 5810, pp. 34–45. Springer, Berlin (2009)

    Chapter  Google Scholar 

  56. Sauer, P.: On the recognition of digital circles in linear time. Comput. Geom. 2, 287–302 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  57. Song, J.: An object oriented progressive-simplification based vectorzation system for engineering drawings: Model, algorithm, and performance. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 890–904 (2002)

    Google Scholar 

  58. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Chapman and Hall, London (1993)

    Google Scholar 

  59. Worring, M., Smeulders, A.W.M.: Digitized circular arcs: Characterization and parameter estimation. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 587–598 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Bhowmick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, S., Bhowmick, P. Determining Digital Circularity Using Integer Intervals. J Math Imaging Vis 42, 1–24 (2012). https://doi.org/10.1007/s10851-011-0270-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0270-6

Keywords

Navigation