Abstract
Digital circularity is a well-researched topic for its real-world practicality to circularity measure, estimation of discrete curvature, circular arc segmentation, etc. The proposed work reveals a novel technique to determine whether a digital curve segment is digitally circular using the correspondence of its constituent runs with the square numbers in integer intervals. The notion of radii nesting is used to successively analyze these runs of digital points. Two algorithms have been proposed along with their demonstrations and detailed analysis, and a simple-yet-effective solution has been provided to expedite them using infimum circle and supremum circles that bound the initial range of radii. We have also shown how the proposed technique can be used for segmentation of an arbitrary digital curve segment into a sequence of circular arcs. Experimental results have been given to demonstrate the efficiency and elegance of the proposed technique.
Similar content being viewed by others
References
Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695–706 (1994)
Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Graph. 3(1), 75–86 (1997)
Asano, T., Klette, R., Ronse, C. (eds.): Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616. Springer, Berlin (2003)
Balog, A., Bárány, I.: On the convex hull of the integer points in a disc. In: Proc. 7th Annual Symposium on Computational Geometry (SCG 1991), pp. 162–165 (1991)
Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Jorge, R.M.N., Tavares, J.M.R.S. (eds.) Computational Modeling of Objects Represented in Images, 2nd Intl. Symposium, CompIMAGE (2010). LNCS, vol. 6026. Springer, Berlin (2010)
Bera, S., Bhowmick, P., Bhattacharya, B.B.: Detection of circular arcs in a digital image using chord and sagitta properties. In: Extended Version of Proc. Eighth Intl. Workshop on Graphics Recognition (GREC 2009). LNCS, vol. 6020, pp. 69–80 (2010)
Bhowmick, P., Bhattacharya, B.B.: Number-theoretic interpretation and construction of a digital circle. Discrete Appl. Math. 156(12), 2381–2399 (2008)
Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20(2), 100–106 (1977)
Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity—A review. Discrete Appl. Math. 155(4), 468–495 (2007)
Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theor. Comput. Sci. 283(1), 151–170 (2002)
Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput. Sci. 319(1–3), 203–227 (2004)
Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points in a hyperball. Theor. Comput. Sci. 406(1–2), 24–30 (2008)
Chattopadhyay, S., Das, P.P., Ghosh-Dastidar, D.: Reconstruction of a digital circle. Pattern Recognit. 27(12), 1663–1676 (1994)
Chiu, S.H., Liaw, J.J.: An effective voting method for circle detection. Pattern Recognit. Lett. 26(2), 121–133 (2005)
Coeurjolly, D., Gérard, Y., Reveillès, J.-P., Tougne, L.: An elementary algorithm for digital arc segmentation. Discrete Appl. Math. 139, 31–50 (2004)
Coeurjolly, D., Miguet, S., Tougne, L.: Discrete curvature based on osculating circle estimation. In: IWVF-4: Proc. 4th Intl. Workshop Visual Form, pp. 303–312. Springer, London (2001)
Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.-M.: On digital plane preimage structure. Discrete Appl. Math. 151(1–3), 78–92 (2005)
Damaschke, P.: The linear time recognition of digital arcs. Pattern Recognit. Lett. 16, 543–548 (1995)
Davies, E.: Machine Vision: Theory, Algorithms, Praticalities. Academic Press, London (1990)
Davies, E.R.: A modified Hough scheme for general circle location. Pattern Recognit. 7(1), 37–43 (1984)
Davies, E.R.: A high speed algorithm for circular object detection. Pattern Recognit. Lett. 6, 323–333 (1987)
Debled-Rennesson, I., Reveilles, J.P.: A linear algorithm for segmentation of digital curves. Int. J. Pattern Recognit. Artif. Intell. 9, 635–662 (1995)
Dori, D., Liu, W.: Sparse pixel vectorization: An algorithm and its performance evaluation. IEEE Trans. PAMI 21(3) (1999)
Fisk, S.: Separating point sets by circles, and the recognition of digital disks. IEEE Trans. Pattern Anal. Mach. Intell. 8, 554–556 (1986)
Foley, J.D., Dam, A.V., Feiner, S.K., Hughes, J.F.: Computer Graphics—Principles and Practice. Addison-Wesley, Reading (1993)
Foresti, G.L., Regazzoni, C.S., Vernazza, G.: Circular arc extraction by direct clustering in a 3D Hough parameter space. Signal Process. 41, 203–224 (1995)
Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. EC-10, 260–268 (1961)
Freeman, H.: Techniques for the digital computer analysis of chain-encoded arbitrary plane curves. In: Proc. National Electronics Conf., vol. 17, pp. 421–432 (1961)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1993)
Haralick, R.M.: A measure for circularity of digital figures. IEEE Trans. Syst. Man Cybern. 4, 394–396 (1974)
Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 890–904 (2006)
Ioannoua, D., Hudab, W., Lainec, A.: Circle recognition through a 2D Hough Transform and radius histogramming. Image Vis. Comput. 17, 15–26 (1999)
Kim, C.: Digital disks. IEEE Trans. Pattern Anal. Mach. Intell. 6, 372–374 (1984)
Kim, C.E., Anderson, T.A.: Digital disks and a digital compactness measure. In: Proc. 16th Annual ACM Symposium on Theory of Computing, pp. 117–124 (1984)
Kim, H.S., Kim, J.H.: A two-step circle detection algorithm from the intersecting chords. Pattern Recognit. Lett. 22(6–7), 787–798 (2001)
Klette, R.: Digital geometry—The birth of a new discipline. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)
Klette, R., Žunić, J.: Interactions between number theory and image analysis. In: Latecki, L.J., Mount, D.M., Wu, A.Y. (eds.) Proc. SPIE, Vision Geometry IX, vol. 4117, pp. 210–221 (2000)
Kong, T.Y.: Digital topology. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)
Kovalevsky, V.A.: New definition and fast recognition of digital straight segments and arcs. In: Proc. 10th Intl. Conf. Pattern Recognition (ICPR), pp. 31–34. IEEE Comput. Soc., Los Alamitos (1990)
Kulpa, Z., Kruse, B.: Algorithms for circular propagation in discrete images. Comput. Vis. Graph. Image Process. 24(3), 305–328 (1983)
Lamiroy, B., Guebbas, Y.: Robust and precise circular arc detection. In: Extended Version of Proc. Eighth Intl. Workshop on Graphics Recognition (GREC 2009). LNCS, vol. 6020, pp. 49–60 (2010)
Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1185–1190 (2000)
Leavers, V.: Survey: Which Hough transform? CVGIP, Image Underst. 58, 250–264 (1993)
McIlroy, M.D.: A note on discrete representation of lines. AT&T Bell Lab. Tech. J. 64(2), 481–490 (1985)
Megiddo, N.: Linear time algorithm for linear programming in ℝ3 and related problems. SIAM J. Comput. 12, 759–776 (1983)
Nakamura, A., Aizawa, K.: Digital circles. Comput. Vis. Graph. Image Process. 26(2), 242–255 (1984)
Nakamura, A., Rosenfeld, A.: Digital calculus. Inf. Sci. 98, 83–98 (1997)
Nguyen, T.P., Debled-Rennesson, I.: A linear method for segmentation of digital arcs. Rapport de recherche no 0001 (Centre de recherche INRIA Nancy), Feb. 2010
Pitteway, M.L.V.: Algorithm for drawing ellipses or hyperbolae with a digital plotter. Comput. J. 10(3), 282–289 (1967)
Richard, A., Wallet, G., Fuchs, L., Andres, E., Largeteau-Skapin, G.: Arithmetization of a circular arc. In: Proc. 15th IAPR International Conference on Discrete Geometry for Computer Imagery (DGCI ’09). LNCS, vol. 5810, pp. 350–361. Springer, Berlin (2009)
Rodríguez, M., Abdoulaye, S., Largeteau-Skapin, G., Andres, E.: Generalized perpendicular bisector and circumcenter. In: Computational Modeling of Objects Represented in Images, 2nd Intl. Symposium, CompIMAGE (2010). LNCS, vol. 6026, pp. 1–10. Springer, Berlin (2010)
Rosenfeld, A., Kak, A.C.: Digital Picture Processing, 2nd edn. Academic Press, New York (1982)
Roussillon, T., Sivignon, I., Tougne, L.: Measure of circularity for parts of digital boundaries and its fast computation. Pattern Recognit. 43(1), 37–46 (2010)
Roussillon, T., Tougne, L., Sivignon, I.: On three constrained versions of the digital circular arc recognition problem. In: Proc. 15th IAPR International Conference on Discrete Geometry for Computer Imagery (DGCI ’09). LNCS, vol. 5810, pp. 34–45. Springer, Berlin (2009)
Sauer, P.: On the recognition of digital circles in linear time. Comput. Geom. 2, 287–302 (1993)
Song, J.: An object oriented progressive-simplification based vectorzation system for engineering drawings: Model, algorithm, and performance. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 890–904 (2002)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Chapman and Hall, London (1993)
Worring, M., Smeulders, A.W.M.: Digitized circular arcs: Characterization and parameter estimation. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 587–598 (1995)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pal, S., Bhowmick, P. Determining Digital Circularity Using Integer Intervals. J Math Imaging Vis 42, 1–24 (2012). https://doi.org/10.1007/s10851-011-0270-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-011-0270-6