[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Variational Curve Smoothing and Reconstruction

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper we discuss and experimentally compare variational methods for curve denoising, curve smoothing and curve reconstruction problems. The methods are based on defining suitable cost functionals to be minimized, the cost being the combination of a fidelity term measuring the “distance” of a curve from the data and a smoothness term measuring the curve’s L 1-norm or length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Morales, F.: Affine morphological multiscale analysis of corners and multiple junctions. Int. J. Comput. Vis. 25, 95–107 (1997)

    Article  Google Scholar 

  2. Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: IEEE International Conference on Computer Vision, vol. 1, pp. 105–112 (2001)

  3. Boykov, Y., Kolmogorov, V.: Computing geodesic and minimal surfaces via graph cuts. In: International Conference on Computer Vision, vol. 1, pp. 26–33 (2003)

  4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1124–1137 (2004)

    Article  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632–1648 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen, L.D., Cohen, I.: Finite element methods for active contour models and balloons for 2D and 3D images. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1131–1147 (1993)

    Article  Google Scholar 

  9. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24, 57–78 (1997)

    Article  Google Scholar 

  10. Cremers, D., Soatto, S.: A pseudo-distance for shape priors in level set segmentation. In: 2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, pp. 169–176 (2003)

  11. Deriche, R., Giraudon, G.: A computational approach for corner and vertex detection. Int. J. Comput. Vis. 10, 101–124 (1993)

    Article  Google Scholar 

  12. Dinic, E.A.: Algorithm for solution of a problem of maximum flow in networks with power estimation. Sov. Math. Dokl. 11, 1277–1280 (1970)

    Google Scholar 

  13. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  14. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. Assoc. Comput. Mach. 35, 921–940 (1988)

    MATH  MathSciNet  Google Scholar 

  15. Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3D models from non-uniformly sampled point clouds without normal information. In: Eurographics Symposium on Geometry Processing, pp. 41–50 (2006)

  16. Kimmel, R.: Numerical Geometry of Images: Theory, Algorithms, and Applications. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Kimmel, R., Bruckstein, A.M.: Regularized Laplacian zero crossings as optimal edge integrators. Int. J. Comput. Vis. 5, 225–243 (2003)

    Article  Google Scholar 

  18. Kiryati, N., Bruckstein, A.M.: Heteroscedastic hough transform (HtHT): an efficient method for robust line fitting in the ‘errors in the variables’ problem. Comput. Vis. Image Underst. 78, 69–83 (2000)

    Article  Google Scholar 

  19. Kolmogorov, V., Boykov, Y.: What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: IEEE International Conference on Computer Vision, pp. 564–571 (2005)

  20. Kolmogorov, V., Zabih, R.: What energy can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26, 147–159 (2004)

    Article  Google Scholar 

  21. Krishnan, D., Lin, P., Tai, X.-C.: An efficient operator splitting method for noise removal in images. Commun. Comput. Phys. 1, 847–858 (2006)

    Google Scholar 

  22. Lempitsky, V., Boykov, Y.: Global optimization for shape fitting. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 17–22 (2007)

  23. Lombaert, H., Sun, Y., Grady, L., Xu, C.: A multilevel banded graph cuts method for fast image segmentation. In: IEEE International Conference on Computer Vision, vol. 1, pp. 259–265 (2005)

  24. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Paragios, N., Rousson, M., Ramesh, V.: Matching distance functions: a shape-to-area variational approach for global-to-local registration. In: Lecture Notes in Computer Science, 7th European Conference on Computer Vision, pp. 775–789 (2002)

  26. Qian, J., Zhang, Y.-T., Zhao, H.-K.: Fast sweeping methods for eikonal equations on triangular meshes. SIAM J. Numer. Anal. 45, 83–107 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  28. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, Y., Song, S., Tan, Z., Wang, D.: Adaptive variational curve smoothing based on level set method. J. Comput. Phys. 228, 6333–6348 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang, J., Ju, L., Wang, X.: An edge-weighted centroidal Voronoi tessellation model for image segmentation. IEEE Trans. Image Process. 18, 1844–1858 (2009)

    Article  Google Scholar 

  32. Xu, N., Bansal, R., Ahuja, N.: Object Segmentation Using Graph Cuts Based Active Contours, vol. 2, pp. 46–53 (2003)

  33. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L 1 range image integration. In: IEEE International Conference on Computer Vision, pp. 14–21 (2007)

  34. Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74, 603–627 (2005)

    MATH  Google Scholar 

  35. Zhao, H., Osher, S., Merriman, B., Kang, M.: Implicit and nonparametric shape reconstruction from unorganized points using variational level set method. Comput. Vis. Image Underst. 80, 295–319 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bruckstein.

Additional information

Professor A.M. Bruckstein’s work was supported in part by an NTU joint visiting professorship at the School of Physical and Mathematical Sciences and the Institute for Media Innovations.

The work is supported in part by the NTU start-up grant M58110011, Singapore MOE ARC 29/07 T207B2202 and NRF 2007IDM-IDM 002-010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, D. & Bruckstein, A.M. On Variational Curve Smoothing and Reconstruction. J Math Imaging Vis 37, 183–203 (2010). https://doi.org/10.1007/s10851-010-0201-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0201-y

Keywords

Navigation