[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

General Adaptive Neighborhood Choquet Image Filtering

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

A novel framework entitled General Adaptive Neighborhood Image Processing (GANIP) has been recently introduced in order to propose an original image representation and mathematical structure for adaptive image processing and analysis. The central idea is based on the key notion of adaptivity which is simultaneously associated with the analyzing scales, the spatial structures and the intensity values of the image to be addressed. In this paper, the GANIP framework is briefly exposed and particularly studied in the context of Choquet filtering (using fuzzy measures), which generalizes a large class of image filters. The resulting spatially-adaptive operators are studied with respect to the general GANIP framework and illustrated in both the biomedical and materials application areas. In addition, the proposed GAN-based filters are practically applied and compared to several other denoising methods through experiments on image restoration, showing a high performance of the GAN-based Choquet filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amattouch, M.: Théorie de la mesure et analyse d’image. Master’s thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, France (2005)

  2. Arce, G.R., Foster, R.E.: Detail-preserving ranked-order based filters for image processing. IEEE Trans. Acoust. Speech Signal Process. 37(1), 83–98 (1989)

    Article  Google Scholar 

  3. Brailean, J.C., Little, D., Giger, M.L., Chen, C.T., Sullivan, B.J.: A quantitative performance evaluation of the EM algorithm applied to radiographic images. In: Proceedings of the SPIE Conference on Biomedical Image Processing, pp. 40–46 (1991)

  4. Brailean, J.C., Sullivan, B.J., Chen, C.T., Giger, M.L.: Evaluating the EM algorithm for image processing using a human visual fidelity criterion. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, pp. 2957–2960 (1991)

  5. Brownrigg, D.R.K.: The weighted median filter. Commun. ACM 27, 807–818 (1984)

    Article  Google Scholar 

  6. Buades, A., Coll, B., Morel, J.: On image denoising methods. Technical report, CMLA, ENS Cachan (2004)

  7. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 20–25 (2005)

  8. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)

    MathSciNet  Google Scholar 

  10. Choquet, G.: Topology. Academic Press, New York (1966)

    MATH  Google Scholar 

  11. Debayle, J., Pinoli, J.C.: Spatially adaptive morphological image filtering using intrinsic structuring elements. Image Anal. Stereol. 24(3), 145–158 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Debayle, J., Pinoli, J.C.: General adaptive neighborhood image processing—Part I: Introduction and theoretical aspects. J. Math. Imaging Vis. 25(2), 245–266 (2006)

    Article  MathSciNet  Google Scholar 

  13. Debayle, J., Pinoli, J.C.: General adaptive neighborhood image processing—Part II: Practical application examples. J. Math. Imaging Vis. 25(2), 267–284 (2006)

    Article  MathSciNet  Google Scholar 

  14. Deng, G.: An entropy interpretation of the logarithmic image processing model with application to contrast enhancement. IEEE Trans. Image Process. 18(5), 1135–1140 (2009)

    Article  Google Scholar 

  15. Deng, G., Cahill, L.W.: Multiscale image enhancement using the logarithmic image processing model. Electron. Lett. 29, 803–804 (1993)

    Article  Google Scholar 

  16. Deng, G., Cahill, L.W., Tobin, J.R.: A study of the logarithmic image processing model and its application to image enhancement. IEEE Trans. Image Process. 4, 506–512 (1995)

    Article  Google Scholar 

  17. Deng, G., Pinoli, J.C.: Differentiation-based edge detection using the logarithmic image processing model. J. Math. Imaging Vis. 8(2), 161–180 (1998)

    Article  MathSciNet  Google Scholar 

  18. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1992)

    Google Scholar 

  20. Gordon, R., Rangayyan, R.M.: Feature enhancement of mammograms using fixed and adaptive neighborhoods. Appl. Opt. 23(4), 560–564 (1984)

    Article  Google Scholar 

  21. Grabisch, M.: Fuzzy integrals as a generalized class of order filters. In: Proceedings of the SPIE, pp. 128–136 (1994)

  22. Halmos, P.: Measure Theory. Van Nostrand, Princeton (1950)

    MATH  Google Scholar 

  23. Jiang, L., Feng, X., Yin, H.: Variational image restoration and decomposition with curvelet shrinkage. J. Math. Imaging Vis. 30, 125–132 (2008)

    Article  MathSciNet  Google Scholar 

  24. Jourlin, M., Pinoli, J.C.: Logarithmic image processing. Acta Stereol. 6, 651–656 (1987)

    Google Scholar 

  25. Jourlin, M., Pinoli, J.C.: A model for logarithmic image processing. J. Microsc. 149, 21–35 (1988)

    Google Scholar 

  26. Jourlin, M., Pinoli, J.C.: Logarithmic image processing: the mathematical and physical framework for the representation and processing of transmitted images. Adv. Imaging Electron Phys. 115, 129–196 (2001)

    Google Scholar 

  27. Jourlin, M., Pinoli, J.C., Zeboudj, R.: Contrast definition and contour detection for logarithmic images. J. Microsc. 156, 33–40 (1988)

    Google Scholar 

  28. Koc, S., Ercelebi, E.: Image restoration by lifting-based wavelet domain E-median filter. ETRI J. 28(1), 51–58 (2006)

    Article  Google Scholar 

  29. Lim, J.S.: Two-Dimensional Signal and Image Processing. Prentice-Hall, Englewood Cliffs (1990)

    Google Scholar 

  30. Lindeberg, T.: Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat. 21(2), 225–270 (1994)

    Article  Google Scholar 

  31. Mallat, S.G.: A theory for multiresolution decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  32. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman, San Fransisco (1982)

    Google Scholar 

  33. Mekki Berrada, M.K., Gruy, F., Kuntzsch, T., Cournil, M.: Multi-scale agglomerate synthesis by homogeneous precipitation. Ceram. Trans. 172, 3–9 (2005)

    Google Scholar 

  34. Murofushi, T., Sugeno, M.: An interpretation of fuzzy measure and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets Syst. 29, 201–227 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  35. Oppenheim, A.V.: Generalized superposition. Inf. Control 11, 528–536 (1967)

    Article  MATH  Google Scholar 

  36. Oppenheim, A.V., Schafer, R.W., Stockham, T.G.: Nonlinear filtering of multiplied and convolved signals. In: Proceedings of the IEEE, pp. 1264–1291 (1968)

  37. Palomares, J.M., Gonzalez, J., Ros, E., Prieto, A.: General logarithmic image processing convolution. IEEE Trans. Image Process. 15(11), 3602–3608 (2006)

    Article  Google Scholar 

  38. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  39. Pinoli, J.C.: A contrast definition for logarithmic images in the continuous setting. Acta Stereol. 10, 85–96 (1991)

    MATH  Google Scholar 

  40. Pinoli, J.C.: A general comparative study of the multiplicative homomorphic, log-ratio and logarithmic image processing approaches. Signal Process. 58, 11–45 (1997)

    Article  MATH  Google Scholar 

  41. Pinoli, J.C.: The logarithmic image processing model: connections with human brightness perception and contrast estimators. J. Math. Imaging Vis. 7(4), 341–358 (1997)

    Article  Google Scholar 

  42. Pinoli, J.C., Debayle, J.: Logarithmic adaptive neighborhood image processing (LANIP): introduction, connections to human brightness perception and application issues. J. Adv. Signal Process.—Spec. Issue Image Percept. 2007, 36105 (2007), 22 p

    Google Scholar 

  43. Pratt, W.K.: Digital Image Processing. Wiley, New York (1991)

    MATH  Google Scholar 

  44. Rosenfeld, A.: Picture Processing by Computers. Academic Press, New York (1969)

    Google Scholar 

  45. Roux, B., Faure, R.M.: Recognition and quantification of clinker phases by image analysis. Acta Stereol. 11, 149–154 (1992)

    Google Scholar 

  46. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  47. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3441–3452 (2006)

    Article  Google Scholar 

  48. Stockham, T.G.: Image processing in the context of a visual model. In: Proceedings of the IEEE, pp. 825–842 (1972)

  49. Sugeno, M.: Theory of fuzzy integrals ans its applications. Ph.D. thesis, Tokyo Institute of Technology (1974)

  50. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the International Conference on Computer Vision, Bombay, India, pp. 839–846 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Debayle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debayle, J., Pinoli, JC. General Adaptive Neighborhood Choquet Image Filtering. J Math Imaging Vis 35, 173–185 (2009). https://doi.org/10.1007/s10851-009-0163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0163-0

Keywords

Navigation