[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dielectric relaxation investigations of polyester/CoFe2O4 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We present for the first time the study of Raman spectra and dielectric relaxation of polyester polymer-CoFe2O4 (0.0, 5.0, 10.0, 15.0 and 20.0 wt%) nanocomposites. Raman spectroscopy was applied as a sensitive structural identification technique to characterize the polyester-CoFe2O4 nanocomposites. The images of atomic force microscopy (AFM) confirmed the uniform distribution of CoFe2O4 inside the polymer matrix. The dielectric relaxation analyses were carried out on the polyester-CoFe2O4 nanocomposites at different temperatures. An increase in dielectric constant ε1 was observed for all samples with increasing temperatures due to the alignment of the electric dipoles with the applied electric field. In contrast, ε1 decreased with increasing the frequency, which is attributed to the difficulty for the electric dipoles to follow the electric field. The α-relaxation peak at a high frequency moved to higher frequencies after increasing the temperature. The activation energies for Maxwell-Wagner Sillar (MWS) changed from 0.84 to 1.01 eV while the activation energies for α-relaxations were (0.54–0.94 eV). The conduction mechanism for the polyester-CoFe2O4 nanocomposites followed the correlated barrier hopping (CBH) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the author upon reasonable request.

References

  1. X. Sun, C. Huang, L. Wang, L. Liang, Y. Cheng, W. Fei, Y. Li, Recent progress in graphene/polymer nanocomposites. Adv. Mater. 33(6), 2001105 (2021)

    Article  CAS  Google Scholar 

  2. Z.A. Alrowaili, T.A. Taha, K.S. El-Nasser, H. Donya, Significant enhanced optical parameters of PVA-Y2O3 Polymer Nanocomposite films. J. Inorg. Organomet. Polym Mater. 31(7), 3101–3110 (2021)

    Article  CAS  Google Scholar 

  3. X. Yan, J. Liu, M.A. Khan, S. Sheriff, S. Vupputuri, R. Das, …, Z. Guo, Efficient solvent-free microwave irradiation synthesis of highly conductive polypropylene nanocomposites with lowly loaded carbon nanotubes. ES Mater. Manuf. 9(12), 21–33 (2020)

    CAS  Google Scholar 

  4. X. Lu, H. Liu, V. Murugadoss, I. Seok, J. Huang, J.E. Ryu, Z. Guo, Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage. Eng. Sci. 9(3), 25–34 (2020)

    CAS  Google Scholar 

  5. Y. Zhou, S. Wu, Y. Ma, H. Zhang, X. Zeng, F. Wu, …, Z. Guo, Recent advances in organic/composite phase change materials for energy storage. ES Energy & Environment. 9(8), 28–40 (2020)

    CAS  Google Scholar 

  6. R. Das, S. Vupputuri, Q. Hu, Y. Chen, H. Colorado, Z. Guo, Z. Wang, Synthesis and characterization of antiflammable vinyl ester resin nanocomposites with surface functionalized nanotitania (ES Materials & Manufacturing, 2020)

    Book  Google Scholar 

  7. Y. Yin, B. Jiang, X. Zhu, L. Meng, Y. Huang, Investigation of thermostability of modified graphene oxide/methylsilicone resin nanocomposites. Eng. Sci. 5(6), 73–78 (2018)

    Google Scholar 

  8. J. Chen, Y. Zhu, Z. Guo, A.G. Nasibulin, Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Eng. Sci. 12(14), 13–22 (2020)

    CAS  Google Scholar 

  9. L. He, Improve thermal conductivity of polymer composites via conductive network. Nat. Nanotechnol. 13, 1–2 (2021)

    Google Scholar 

  10. T.A. Taha, M.H. Mahmoud, Synthesis and characterization of PVDF-Er2O3 polymer nanocomposites for energy storage applications. Mater. Chem. Phys. 270, 124827 (2021)

    Article  CAS  Google Scholar 

  11. Z. Yu, Y. Bai, J.H. Wang, Y. Li, Effects of functional additives on structure and Properties of Polycarbonate-based composites filled with Hybrid Chopped Carbon Fiber/Graphene Nanoplatelet Fillers. ES Energy & Environment. 12(2), 66–76 (2021)

    Google Scholar 

  12. G. Qi, Y. Liu, L. Chen, P. Xie, D. Pan, Z. Shi, …, Z. Guo, Lightweight Fe3C@ Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv. Compos. Hybrid Mater. 4(4), 1226–1238 (2021)

    Article  CAS  Google Scholar 

  13. L. Sun, L. Liang, Z. Shi, H. Wang, P. Xie, D. Dastan, …, R. Fan, Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Eng. Sci. 12(5), 95–105 (2020)

    CAS  Google Scholar 

  14. D. Zhang, J. Sun, L.J. Lee, J.M. Castro, Overview of ultrasonic assisted manufacturing multifunctional carbon nanotube nanopaper based Polymer nanocomposites. Eng. Sci. 10(14), 35–50 (2020)

    CAS  Google Scholar 

  15. T.A. Taha, M.H. Mahmoud, A. Hayat, Dielectric relaxation studies on PVC-Pb3O4 Polymer nanocomposites. J. Mater. Sci. 32, 27666–27675 (2021)

    CAS  Google Scholar 

  16. G. Sahu, M. Das, M. Yadav, B.P. Sahoo, J. Tripathy, Dielectric relaxation behavior of silver nanoparticles and graphene oxide embedded poly (vinyl alcohol) nanocomposite film: an effect of ionic liquid and temperature. Polymers. 12(2), 374 (2020)

    Article  CAS  Google Scholar 

  17. P. Dhatarwal, R.J. Sengwa, Dielectric relaxation, Li-ion transport, electrochemical, and structural behaviour of PEO/PVDF/LiClO4/TiO2/PC-based plasticized nanocomposite solid polymer electrolyte films. Compos. Commun. 17, 182–191 (2020)

    Article  Google Scholar 

  18. P. Dhatarwal, R.J. Sengwa, Structural, dielectric dispersion and relaxation, and optical properties of multiphase semicrystalline PEO/PMMA/ZnO nanocomposites. Compos. Interfaces. 28(8), 827–842 (2021)

    Article  CAS  Google Scholar 

  19. L. Fang, J. Zhou, C. He, Y. Tao, C. Wang, M. Dai, Q. Fang, Understanding how intrinsic micro-pores affect the dielectric properties of polymers: an approach to synthesize ultra-low dielectric polymers with bulky tetrahedral units as cores. Polym. Chem. 11(15), 2674–2680 (2020)

    Article  CAS  Google Scholar 

  20. M. Yao, C. Li, Z. Su, Z. Li, H. Wang, X. Yao, Interfacial effect of Cu electrode enhanced energy density of amorphous aluminum oxide dielectric capacitor. J. Alloys Compd. 855, 157473 (2021)

    Article  CAS  Google Scholar 

  21. P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu, N. Wu, …, R. Fan, Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4(1), 173–185 (2021)

    Article  CAS  Google Scholar 

  22. Z. Sun, X. Huang, A. Xia, Z. Yan, L. Qian, Tunable bandwidth of negative permittivity from Graphene-Silicon Carbide Ceramics. Eng. Sci. 16, 19–25 (2021)

    CAS  Google Scholar 

  23. N. Wu, W. Du, Q. Hu, S.V.Q. Jiang, Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng. Sci. 13(13), 11–23 (2020)

    Google Scholar 

  24. Y. Zhao, M. Niu, F. Yang, Y. Jia, Y. Cheng, Ultrafast electro-thermal responsive heating film fabricated from graphene modified conductive materials. Eng. Sci. 8(4), 33–38 (2019)

    Google Scholar 

  25. B. Zhao, L. Liang, Z. Bai, X. Guo, R. Zhang, Q. Jiang, Z. Guo, Poly (vinylidene fluoride)/Cu@ Ni anchored reduced-graphene oxide composite films with folding movement to boost microwave absorption properties. ES Energy & Environment. 14, 79–86 (2021)

    CAS  Google Scholar 

  26. T.A. Taha, A. Hassona, S. Elrabaie, M.T. Attia, Micro-structure, thermal, and dielectric performance of polyester nanocomposites containing nano-Ni0.5Zn0.5Fe2O4. Appl. Phys. A 126(9), 1–10 (2020)

    Article  Google Scholar 

  27. T.A. Taha, A. Hassona, S. Elrabaie, M.T. Attia, Dielectric spectroscopy of PVA-Ni0.5Zn0.5Fe2O4 polymer nanocomposite films. J. Asian. Ceam. Soc. 8(4), 1076–1082 (2020)

    Article  Google Scholar 

  28. J. Leichtweis, S. Silvestri, Y. Vieira, de T.A. Lima Burgo, E.L. Foletto, A novel tin ferrite/polymer composite use in photo-Fenton reactions. Int. J. Environ. Sci. Technol. 18(6), 1537–1548 (2021)

    Article  CAS  Google Scholar 

  29. W.S. Mohamed, N.M.A. Hadia, M. Alzaid, A.M. Abu-Dief, Impact of Cu2 + cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approach. Solid State Sci. 125, 106841 (2022)

    Article  CAS  Google Scholar 

  30. W.S. Mohamed, A.M. Abu-Dief, Impact of rare earth europium (RE-Eu3+) ions substitution on microstructural, optical and magnetic properties of CoFe2 – xEuxO4 nanosystems. Ceram. Int. 46(10), 16196–16209 (2020)

    Article  CAS  Google Scholar 

  31. W.S. Mohamed, M. Alzaid, S.M. Abdelbaky, M. Amghouz, Z. García-Granda, S., M. Abu-Dief, A, Impact of Co2 + substitution on microstructure and magnetic properties of CoxZn1-xFe2O4 nanoparticles. Nanomaterials. 9(11), 1602 (2019)

    Article  CAS  Google Scholar 

  32. R. Gonçalves, P. Martins, D.M. Correia, V. Sencadas, J.L. Vilas, L.M. Leon, …, S. Lanceros-Méndez, Development of magnetoelectric CoFe2O4/poly (vinylidene fluoride) microspheres. RSC Adv. 5(45), 35852–35857 (2015)

    Article  Google Scholar 

  33. M.M. Ismail, S.N. Rafeeq, J. Sulaiman, A. Mandal, Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite. Appl. Phys. A 124(5), 1–12 (2018)

    Article  Google Scholar 

  34. D.P. Sherstyuk, A.Y. Starikov, V.E. Zhivulin, D.A. Zherebtsov, S.A. Gudkova, N.S. Perov, …, A.V. Trukhanov, Effect of Co content on magnetic features and SPIN states IN Ni–Zn spinel ferrites. Ceram. Int. 47(9), 12163–12169 (2021)

    Article  CAS  Google Scholar 

  35. M. Mostafa, O. Saleh, A.M. Henaish, A. El-Kaream, S.A. Ghazy, R. Hemeda, O.M. Darwish, M. A, Structure, morphology and electrical/magnetic properties of Ni-Mg nano-ferrites from a new perspective. Nanomaterials. 12(7), 1045 (2022)

    Article  CAS  Google Scholar 

  36. M.A. Almessiere, Y. Slimani, S. Ali, A. Baykal, R.J. Balasamy, S. Guner, …, A. Manikandan, Impact of Ga3 + ions on the structure, magnetic, and optical features of Co-ni nanostructured spinel ferrite microspheres. Nanomaterials. 12(16), 2872 (2022)

    Article  CAS  Google Scholar 

  37. D.A. Vinnik, D.P. Sherstyuk, V.E. Zhivulin, D.E. Zhivulin, A.Y. Starikov, S.A. Gudkova, …, A.V. Trukhanov, Impact of the Zn–Co content on structural and magnetic characteristics of the Ni spinel ferrites. Ceram. Int. 48(13), 18124–18133 (2022)

    Article  CAS  Google Scholar 

  38. Y. Slimani, M.A. Almessiere, S. Guner, B. Aktas, S.E. Shirsath, M.V. Silibin, …, A. Baykal, Impact of Sm3 + and Er3 + cations on the structural, optical, and magnetic traits of spinel cobalt ferrite nanoparticles: comparison investigation. ACS Omega. 7(7), 6292–6301 (2022)

    Article  CAS  Google Scholar 

  39. E.A. Franco-Urquiza, J.F. May-Crespo, E. Velázquez, C.A. Pérez, R. Mora, P. González García, Thermal degradation kinetics of ZnO/polyester nanocomposites. Polymers. 12(8), 1753 (2020)

    Article  CAS  Google Scholar 

  40. R.K. Bharadwaj, A.R. Mehrabi, C. Hamilton, C. Trujillo, M. Murga, R. Fan, A.K. Thompson, Structure–property relationships in cross-linked polyester–clay nanocomposites. Polymer. 43(13), 3699–3705 (2002)

    Article  CAS  Google Scholar 

  41. G.O. Glória, M.C.A. Teles, F.P.D. Lopes, C.M.F. Vieira, F.M. Margem, de M. Almeida Gomes, S.N. Monteiro, Tensile strength of polyester composites reinforced with PALF. J. Mater. Res. Technol. 6(4), 401–405 (2017)

    Article  Google Scholar 

  42. K. Rao, A.V. Prasad, M.N.V. Babu, K.M. Rao, A.V.S. Gupta, S. K. S, Tensile properties of elephant grass fiber reinforced polyester composites. J. Mater. Sci. 42(9), 3266–3272 (2007)

    Article  CAS  Google Scholar 

  43. Y.M. Cao, J. Sun, D.H. Yu, Preparation and properties of nano-Al2O3 particles/polyester/epoxy resin ternary composites. J. Appl. Polym. Sci. 83(1), 70–77 (2002)

    Article  CAS  Google Scholar 

  44. W. Zhang, K. Zhao, F. Guan, J. Yin, Y. Feng, J. Li, Y. Li, Microstructure and Electrical properties of Fluorene Polyester based Nanocomposite Dielectrics. Polymers. 13(18), 3053 (2021)

    Article  CAS  Google Scholar 

  45. M. Khutia, G.M. Joshi, P. Thomas, Dielectric relaxation of nano perovskite SrTiO3 reinforced polyester resin/styrene blend for electronic applications. J. Mater. Sci. 27(7), 7685–7692 (2016)

    CAS  Google Scholar 

  46. L.Y. Seng, F.H. Wee, H.A. Rahim, F. Malek, K.Y. You, Z. Liyana, A.A.M. Ezanuddin, EMI shielding based on MWCNTs/polyester composites. Appl. Phys. A 124(2), 1–7 (2018)

    Article  CAS  Google Scholar 

  47. T.A. Taha, S.A. Saad, Processing, thermal and dielectric investigations of polyester nanocomposites based on nano-CoFe2O4. Mater. Chem. Phys. 255, 123574 (2020)

    Article  CAS  Google Scholar 

  48. P. Chandramohan, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, Cation distribution and particle size effect on Raman spectrum of CoFe2O4. J. Solid State Chem. 184(1), 89–96 (2011)

    Article  CAS  Google Scholar 

  49. J.D. Baraliya, H.H. Joshi, Spectroscopy investigation of nanometric cobalt ferrite synthesized by different techniques. Vib. Spectrosc. 74, 75–80 (2014)

    Article  CAS  Google Scholar 

  50. G. Ellis, F. Roman, C. Marco, M.A. Gomez, J.G. Fatou, FT Raman study of orientation and crystallization processes in poly (ethylene terephthalate). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 51(12), 2139–2145 (1995)

    Article  Google Scholar 

  51. M.A. Castro, F.J. Pereira, A.J. Aller, D. Littlejohn, Raman spectrometry as a screening tool for solvent-extracted azo dyes from polyester-based textile fibres. Polym. Test. 91, 106765 (2020)

    Article  CAS  Google Scholar 

  52. C. Zhu, N. Tong, L. Song, G. Zhang, Investigation of Raman spectra of polyethylene terephthalate, in International Symposium on Photonics and Optoelectronics 2015. (International Society for Optics and Photonics., Bellingham, 1973), p.96560E

    Google Scholar 

  53. S. Gunasekaran, R. Hemamalini, Spectroscopic analysis of the structure of repeat unit of polyethylene terepthalate (PET). Indian J. Pure Appl. Phys. 42, 246–250 (2004)

    CAS  Google Scholar 

  54. D.I. Bower, W.F. Maddams, The vibrational spectroscopy of polymers (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  55. T.A. Taha, K.S. El-Nasser, Synthesis, thermal and dielectric investigations of PVDF/PVP/Co0.6Zn0.4Fe2O4 polymer nanocomposite films. J. Mater. Sci. 32, 27339–27347 (2021)

    CAS  Google Scholar 

  56. T.A. Taha, M.A.A. Alzara, Synthesis, thermal and dielectric performance of PVA-SrTiO3 Polymer nanocomposites. J. Mol. Struct. 1238, 130401 (2021)

    Article  CAS  Google Scholar 

  57. T.A. Taha, M.H. Mahmoud, H.H. Hamdeh, Development, thermal and dielectric investigations of PVDF-Y2O3 polymer nanocomposite films. J. Polym. Res. 28(5), 1–9 (2021)

    Article  Google Scholar 

  58. T.A. Taha, S. Alomairy, S.A. Saad, H.O. Tekin, M.S. Al-Buriahi, Synthesis and dielectric relaxation behavior of 55B2O3–15SiO2–30Na2O: WO3 glass system. Ceram. Int. 47(14), 20201–20209 (2021)

    Article  CAS  Google Scholar 

  59. A. Sanida, S.G. Stavropoulos, T. Speliotis, G.C. Psarras, Development, characterization, energy storage and interface dielectric properties in SrFe12O19/epoxy nanocomposites. Polymer. 120, 73–81 (2017)

    Article  CAS  Google Scholar 

  60. S. Kumar, S. Supriya, M. Kar, Enhancement of dielectric constant in polymer-ceramic nanocomposite for flexible electronics and energy storage applications. Compos. Sci. Technol. 157, 48–56 (2018)

    Article  CAS  Google Scholar 

  61. P. Beena, R.K. Raju, H.S. Jayanna, AC conductivity and dielectric behaviour of NaNbO3 ceramic polymer composites. Mater. Today 37, 1973–1977 (2021)

    CAS  Google Scholar 

  62. Z. Wang, W. Zhou, L. Dong, X. Sui, H. Cai, J. Zuo, Q. Chen, Dielectric spectroscopy characterization of relaxation process in Ni/epoxy composites. J. Alloys Compd. 682, 738–745 (2016)

    Article  CAS  Google Scholar 

  63. T.A. Taha, S. Elrabaie, M.T. Attia, Exploring the structural, thermal and dielectric properties of PVA/Ni0.5Zn0.5Fe2O4 composites. J. Electron. Mater. 48(10), 6797–6806 (2019)

    Article  CAS  Google Scholar 

  64. T.A. Taha, S. Elrabaie, M.T. Attia, Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite. J. Mater. Sci. 29(21), 18493–18501 (2018)

    CAS  Google Scholar 

  65. Y. Zhou, P. Wang, G. Ruan, P. Xu, Y. Ding, Synergistic effect of P [MPEGMA-IL] modified graphene on morphology and dielectric properties of PLA/PCL blends. ES Mater. Manuf. 11, 20–29 (2021)

    CAS  Google Scholar 

  66. J. Guo, X. Li, H. Liu, D.P. Young, G. Song, K. Song, …, Z. Guo, Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv. Compos. Hybrid Mater. 4(1), 51–64 (2021)

    Article  CAS  Google Scholar 

  67. J. Guo, Z. Chen, W. Abdul, J. Kong, M.A. Khan, D.P. Young, Z. Guo, Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv. Compos. Hybrid Mater. 4, 1–9 (2021)

    Article  Google Scholar 

  68. X. Wu, Z. Chen, F. Wu, Strong nonreciprocal radiation in a InAs film by critical coupling with a dielectric grating. ES Energy Environ. 13, 8–12 (2021)

    CAS  Google Scholar 

  69. G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, M.N. Pisanias, Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym. Lett. 1(12), 781–789 (2007)

    Article  CAS  Google Scholar 

  70. B.K. Singh, B. Kumar, Impedance analysis and high temperature conduction mechanism of flux grown Pb(Zn1/3Nb2/3)0.91Ti0.09O3 single crystal. Cryst. Res. Technol. 45(10), 1003–1011 (2010)

    Article  CAS  Google Scholar 

  71. M. Kaiser, Electrical conductivity and complex electric modulus of titanium doped nickel–zinc ferrites. Physica B 407(4), 606–613 (2012)

    Article  CAS  Google Scholar 

  72. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, Electric modulus and interfacial polarization in composite polymeric systems. J. Mater. Sci. 33(8), 2027–2037 (1998)

    Article  CAS  Google Scholar 

  73. M. Das, A. Akbar, D. Sarkar, Investigation on dielectric properties of polyaniline (PANI) sulphonic acid (SA) composites prepared by interfacial polymerization. Synth. Met. 249, 69–80 (2019)

    Article  CAS  Google Scholar 

  74. S.A. Madbouly, J.U. Otaigbe, Broadband dielectric spectroscopy of nanostructured maleated polypropylene/polycarbonate blends prepared by in situ polymerization and compatibilization. Polymer. 48(14), 4097–4107 (2007)

    Article  CAS  Google Scholar 

  75. H. Wu, Y. Zhong, Y. Tang, Y. Huang, G. Liu, W. Sun, Z. Guo, Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv. Compos. Hybrid Mater. 5, 1–12 (2021)

    CAS  Google Scholar 

  76. B.M. Greenhoe, M.K. Hassan, J.S. Wiggins, K.A. Mauritz, Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks. J. Polym. Sci. Part B 54(19), 1918–1923 (2016)

    Article  CAS  Google Scholar 

  77. Y. Pavani, M. Ravi, S. Bhavani et al., Physical investigations on pure and KBr doped poly(vinyl alcohol) (PVA) Polymer electrolyte films for solid state battery applications. J. Mater. Sci. 29, 5518–5524 (2018)

    CAS  Google Scholar 

  78. K.A. Nath, K. Prasad, K.P. Chandra, A.R. Kulkarni, Impedance and ac conductivity studies of ba (Pr1/2Nb1/2)O3 ceramic. Bull. Mater. Sci. 36(4), 591–599 (2013)

    Article  Google Scholar 

  79. S. Hajlaoui, I. Chaabane, K. Guidara, Conduction mechanism model, impedance spectroscopic investigation and modulus behavior of the organic–inorganic [(C3H7)4N][SnCl5(H2O)]·2H2O compound. RSC Adv. 6(94), 91649–91657 (2016)

    Article  CAS  Google Scholar 

  80. Y. Aydogdu, F. Yakuphanoglu, A. Aydogdu, E. Tas, A. Cukurovali, Electrical and optical properties of newly synthesized glyoxime complexes. Solid State Sci. 4(6), 879–883 (2002)

    Article  CAS  Google Scholar 

  81. R.M. Mahani, S.Y. Marzouk, AC conductivity and dielectric properties of SiO2–Na2O–B2O3–Gd2O3 glasses. J. Alloys Compd. 579, 394–400 (2013)

    Article  CAS  Google Scholar 

  82. P. Jayakrishnan, M.T. Ramesan, Temperature dependence of the electrical conductivity of poly (anthranilic acid)/magnetite nanocomposites and the applicability of different conductivity models. Polym. Compos. 39(8), 2791–2800 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 223202.

Author information

Authors and Affiliations

Authors

Contributions

AHA: Writing—Reviewing and Editing. SA: Conceptualization. AI: Writing- Original draft preparation. SAS: Visualization, Investigation. TAT: Conceptualization, Methodology, Writing—Reviewing and Editing.

Corresponding author

Correspondence to Taha Abdel Mohaymen Taha.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Hereby, the corresponding author declares that the authors have thoroughly read the Journal Policy. Here, I declare that this contribution is original and has not been published anywhere. Also, I declare that this article doesn’t contain any plagiarized materials.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 150 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshammari, A.H., Alhassan, S., Iraqi, A. et al. Dielectric relaxation investigations of polyester/CoFe2O4 composites. J Mater Sci: Mater Electron 34, 2132 (2023). https://doi.org/10.1007/s10854-023-11548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11548-7

Navigation