[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Three-Dimensional Mapping with Augmented Navigation Cost through Deep Learning

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This work addresses the problem of mapping terrain features based on inertial and LiDAR measurements to estimate navigation cost, for an autonomous ground robot. The navigation cost quantifies the degree of how easy or difficult it is to navigate through different areas. Unlike most indoor applications, where surfaces are usually human-made, flat, and structured, external environments may be unpredictable as to the types and conditions of the travel surfaces, such as traction characteristics and inclination. Attaining full autonomy in outdoor environments requires a mobile ground robot to perform the fundamental localization and mapping tasks in unfamiliar environments, but with the added challenge of unknown terrain conditions. Autonomous motion in uneven terrain has been widely explored by the research community focusing on one or more of the several factors involved aiming at both safety and efficient displacement. A fuller representation of the environment is fundamental to increase confidence and to reduce navigation costs. To this end we propose a methodology composed of five main steps: (i) speed-invariant inertial transformation; (ii) roughness level classification; (iii) navigation cost estimation; (iv) sensor fusion through Deep Learning; and (v) estimation of navigation costs for untraveled regions. To validate the methodology, we carried out experiments using ground robots in different outdoor environments with different terrain characteristics. Results show that the inertial data transformation reduces the dispersion of signal magnitude for different speeds and scenarios. Meanwhile, the roughness level classification achieved a mean accuracy of 95.4%, for the speed of 0.6 m/s. Finally, the obtained terrain maps are a faithful representation of outdoor environments allowing accurate and reliable path planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Datasets should be made available upon the acceptance and publication.

References

  1. Nardi, L, Stachniss, C: Actively improving robot navigation on different terrains using Gaussian process mixture models. In: IEEE International Conference on Robotics and Automation (ICRA), p. 03 (2019)

  2. Lynch, K., Park, F: Modern Robotics: Mechanics, Planning and Control. Cambridge University Press (2017)

  3. Pereira, G.A.S., Pimenta, L.C.A., Fonseca, A.R., de Corrêa, L.Q., Mesquita, R.C., Chaimowicz, L., de Almeida, D.S.C., Campos, M.F.M.: Robot navigation in multi-terrain outdoor environments. Int. J. Robot. Res. 28(6), 685–700 (2009)

    Article  Google Scholar 

  4. Guerrero, J.A., Jaud, M., Lenain, R., Rouveure, R., Faure ‘P: Towards lidar-radar based terrain mapping. In: IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO), pp 1–6 (2015)

  5. Genesio, N., Abuhashim, T., Solari, F., Chessa, M., Natale, L.: Mobility map computations for autonomous navigation using an RGBD senso. arXiv:abs/1610.01326 (2016)

  6. Atashgah, M.A.A., Malaek, S.M.B.: A simulation environment for path and image generation in an aerial single-camera vision system. Proc. Institut. Mech. Eng. Part G: J. Aerosp. Eng. 225(5), 541–558 (2011). [Online]. Available: https://doi.org/10.1243/09544100JAERO813

    Google Scholar 

  7. Oliveira, F.G., Alves Neto, A., Borges, P., Campos, M.F.M., Macharet, D.G.: Augmented vector field navigation cost mapping using inertial sensors. In: 19th International Conference on Advanced Robotics (ICAR), pp. 388–393 (2019)

  8. Sebastian, B., Ren, H., Ben-Tzvi, P.: Neural network based heterogeneous sensor fusion for robot motion planning. In: IEEE International Conference on Intelligent Robots and Systems (IROS). IEEE. [Online]. Available: https://doi.org/10.1109/iros40897.2019.8967689 (2019)

  9. Tang, Y., Cai, J., Chen, M., Yan, X., Xie, Y.: An autonomous exploration algorithm using environment-robot interacted traversability analysis. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 4885–4890 (2019)

  10. Sebastian, B., Ben-Tzvi, P.: Physics based path planning for autonomous tracked vehicle in challenging terrain. J. Intell. Robot. Syst. 95(2), 511–526 (2018). [Online]. Available: https://doi.org/10.1007/s10846-018-0851-3

    Article  Google Scholar 

  11. Ono, M., Fuchs, T.J., Steffy, A., Maimone, M., Yen, J.: Risk-aware planetary rover operation: Autonomous terrain classification and path planning. In: IEEE Aerospace Conference, pp. 1–10 (2015)

  12. Sancho-Pradel, D.L., Gao, Y.: A survey on terrain assessment techniques for autonomous operation of planetary robots. J. Br. Interplanet. Soc. 63(5–6), 206–217 (2010)

    Google Scholar 

  13. Otte, S., Weiss, C., Scherer, T., Zell, A: Recurrent Neural Networks for fast and robust vibration-based ground classification on mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5603–5608 (2016)

  14. Ebrahimi, S., Mardani, A.: A new contact angle detection method for dynamics estimation of a UGV subject to slipping in rough-terrain. J. Intell. Robot. Syst. 95(3–4), 999–1019 (2018). [Online]. Available: https://doi.org/10.1007/s10846-018-0932-3

    Google Scholar 

  15. Oliveira, F.G., Santos, E.R.S., Alves Neto, A., Campos, M.F.M., Macharet, D.G.: Speed-invariant terrain roughness classification and control based on inertial sensors. In: 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), pp. 1–6 (2017)

  16. Wang, S., Kodagoda, S., Shi, L., Wang, H.: Road-terrain classification for land vehicles: Employing an acceleration-based approach. IEEE Veh. Technol. Mag. 12(3), 34–41 (2017)

    Article  Google Scholar 

  17. Souza, J.R., Marchant, R., Ott, L., Wolf, D.F., Ramos, F: Bayesian optimisation for active perception and smooth navigation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4081–4087 (2014)

  18. Tanaka, Y., Ji, Y., Yamashita, A., Asama, H: Fuzzy based traversability analysis for a mobile robot on rough terrain. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3965–3970 (2015)

  19. Ye, C., Borenstein, J.: T-transformation: Traversability analysis for navigation on rugged terrain. Int. Soc. Opt. Eng. 5422, 473–483, 09 (2004)

    Google Scholar 

  20. Helmick, D., Angelova, A., Matthies, L.: Terrain adaptive navigation for planetary rovers. J. Field Robot. 26(4), 391–410 (2009)

    Article  Google Scholar 

  21. Sock, J., Kim, J., Min, J., Kwak, K.: Probabilistic traversability map generation using 3d-lidar and camera. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5631–5637 (2016)

  22. Suger, B., Steder, B., Burgard, W: Traversability analysis for mobile robots in outdoor environments: A semi-supervised learning approach based on 3d-lidar data. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3941–3946 (2015)

  23. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2007)

    MATH  Google Scholar 

  24. Parra-Tsunekawa, I., del Solar, J.R., Vallejos, P.: A Kalman-filtering-based approach for improving terrain mapping in off-road autonomous vehicles. J. Intell. Robot. Syst. 78(3–4), 577–591 (2014). [Online]. Available: https://doi.org/10.1007/s10846-014-0087-9

    Google Scholar 

  25. Meng, X., Cao, Z., Liang, S., Pang, L., Wang, S., Zhou, C.: A terrain description method for traversability analysis based on elevation grid map. Int. J. Adv. Robot. Syst. 15(1), 172988141775153 (2018). [Online]. Available: https://doi.org/10.1177/1729881417751530

    Article  Google Scholar 

  26. Martínez, J.L., Morán, M., Morales, J., Robles, A., Sánchez, M.: Supervised learning of natural-terrain traversability with synthetic 3d laser scans. Appl. Sci. 10(3), 1140 (2020). [Online]. Available: https://doi.org/10.3390/app10031140

    Article  Google Scholar 

  27. Krüsi, P., Furgale, P., Bosse, M., Siegwart, R.: Driving on point clouds: Motion planning, trajectory optimization, and terrain assessment in generic nonplanar environments. J. Field Robot. 34(5), 940–984 (2017)

    Article  Google Scholar 

  28. Pfrunder, A., Borges, P.V.K., Romero, A.R., Catt, G., Elfes, A.: Real-time autonomous ground vehicle navigation in heterogeneous environments using a 3d lidar. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2601–2608 (2017)

  29. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  30. Rao, K.R., Kim, D.N., Hwang, J.-J.: Fast Fourier Transform - Algorithms and Applications, 1st edn. Springer Publishing Company Incorporated (2010)

  31. DuPont, E.M., Moore, C.A., Collins, E.G., Coyle, E.: Frequency response method for terrain classification in autonomous ground vehicles. Auton. Robot. 24(4), 337–347 (2008)

    Article  Google Scholar 

  32. Murphy, K.P: Machine Learning: A Probabilistic Perspective. The MIT Press (2012)

  33. Otte, S., Laible, S., Hanten, R., Zell, A.: Robust visual terrain classification with recurrent neural networks. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 01 (2015)

  34. Dutta, A., Dasgupta, P: Ensemble learning with weak classifiers for fast and reliable unknown terrain classification using mobile robots. IEEE Trans. Syst. Man Cybern.: Syst. 47(11), 2933–2944 (2017)

    Article  Google Scholar 

  35. Martínez, J.L., Morán, M., Morales, J., Robles, A., Sánchez, M.: Supervised learning of natural-terrain traversability with synthetic 3d laser scans. Appl. Sci 10(3), 1140 (2020). [Online]. Available: https://doi.org/10.3390/app10031140

    Article  Google Scholar 

  36. Guo, X., Blaise, B., Molnar, J., Coholich, J., Padte, S., Zhao, Y., Hammond, F.L.: Soft foot sensor design and terrain classification for dynamic legged locomotion. In: 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), pp. 550–557 (2020)

  37. Mei, M., Chang, J., Li, Y., Li, Z., Li, X., Lv, W.: Comparative study of different methods in vibration-based terrain classification for wheeled robots with shock absorbers. Sensors 19(5), 1137 (2019). [Online]. Available: https://doi.org/10.3390/s19051137

    Article  Google Scholar 

Download references

Acknowledgments

This work was developed with the support of Conselho Nacional de Desenvolvimento Cientifico e Tecnológicó (CNPq), Coordenacão de Aperfeiçoamento de Pessoal de Nível Superioŗ (CAPES), Fundacão de Amparo à Pesquisa do Estado de Minas Geraiş (FAPEMIG), Fundacão de Amparo à Pesquisa do Estado do Amazonaş (FAPEAM) and Commonwealth Scientific and Industrial Research Organisation (CSIRO).

Funding

- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

- Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)

- Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM)

- Commonwealth Scientific and Industrial Research Organisation (CSIRO)

Author information

Authors and Affiliations

Authors

Contributions

Felipe G. Oliveira was responsible for the general design and development of the navigation cost estimation and map augmentation. Armando A. Neto contributed in the inertial speed-invariant transformation and data analysis. David Howard and Paulo Borges have contributed with the localization and mapping algorithm, and the data acquisition with the Gator platform. Mario F.M. Campos and Douglas G. Macharet have supervised the work and conducted the writing and revision of the paper.

Corresponding author

Correspondence to Felipe G. Oliveira.

Ethics declarations

Conflict of Interests

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, F.G., Neto, A.A., Howard, D. et al. Three-Dimensional Mapping with Augmented Navigation Cost through Deep Learning. J Intell Robot Syst 101, 50 (2021). https://doi.org/10.1007/s10846-020-01304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-020-01304-y

Keywords

Navigation