[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Sliding Mode Control with Gaussian Process Regression for Underwater Robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Sliding mode control is a very effective strategy in dealing not only with parametric uncertainties, but also with unmodeled dynamics, and therefore has been widely applied to robotic agents. However, the adoption of a thin boundary layer neighboring the switching surface to smooth out the control law and to eliminate the undesired chattering effect usually impairs the controller’s performance and leads to a residual tracking error. As a matter of fact, underwater robots are very sensitive to this issue due to their highly uncertain plants and unstructured operating environments. In this work, Gaussian process regression is combined with sliding mode control for the dynamic positioning of underwater robotic vehicles. The Gaussian process regressor is embedded within the boundary layer in order to enhance the tracking performance, by predicting unknown hydrodynamic effects and compensating for them. The boundedness and convergence properties of the tracking error are analytically proven. Numerical results confirm the improved performance of the proposed control scheme when compared with the conventional sliding mode approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ludvigsen, M., Sørensen, A.J.: Towards integrated autonomous underwater operations for ocean mapping and monitoring. Annu. Rev. Control. 42, 145–157 (2016)

    Article  Google Scholar 

  2. Mindell, D.A.: Our Robots, Ourselves: Robotics and the Myths of Autonomy. Viking, New York (2015)

    Google Scholar 

  3. Teague, J., Allen, M.J., Scott, T.S.: The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring. Ocean. Eng. 147, 333–339 (2018)

    Article  Google Scholar 

  4. Mitra, A., Panda, J.P., Warrior, H.V.: The effects of free stream turbulence on the hydrodynamic characteristics of an AUV hull form. Ocean. Eng. 174, 148–158 (2019)

    Article  Google Scholar 

  5. Go, G., Ahn, H.T.: Hydrodynamic derivative determination based on CFD and motion simulation for a tow-fish. Appl. Ocean. Res. 82, 191–209 (2019)

    Article  Google Scholar 

  6. Chen, C.-W., Jiang, Y., Huang, H.-C., Ji, D.-X., Sun, G.Q., Yu, Z., Chen, Y.: Computational fluid dynamics study of the motion stability of an autonomous underwater helicopter. Ocean. Eng. 143, 227–239 (2017)

    Article  Google Scholar 

  7. Ramírez-Macías, J.A., Brongers, P., Rúa, S., Vásquez, R.E.: Hydrodynamic modelling for the remotely operated vehicle Visor3 using CFD. IFAC Papers Online. 49(23), 187–192 (2016)

    Article  Google Scholar 

  8. Alam, K., Ray, T., Anavatti, S.G.: Design optimization of an unmanned underwater vehicle using low-and high-fidelity models. IEEE Trans. Syst. Man. Cybern: Syst. 47(11), 2794–2808 (2015)

    Article  Google Scholar 

  9. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding-mode controller. Robot. Auton. Syst. (8) 56, 670–677 (2008)

    Article  Google Scholar 

  10. Bessa, W.M., Dutra, M.S., Kreuzer, E.: An adaptive fuzzy sliding-mode controller for remotely operated underwater vehicles. Robot. Auton. Syst. 58, 16–26 (2010)

    Article  Google Scholar 

  11. Peng, Z., Wang, J., Wang, J.: Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation. IEEE Trans. Ind. Electron. 66(5), 3627–3635 (2019)

    Article  Google Scholar 

  12. Londhe, P.S., Patre, B.M.: Adaptive fuzzy sliding mode control for robust trajectory tracking control of an autonomous underwater vehicle. Intell. Serv. Robot. 12(1), 87–102 (2019)

    Article  Google Scholar 

  13. Ingrosso, R., Palma, D., Indiveri, G., Avanzini, G.: Preliminary results of a dynamic modelling approach for underwater multi-hull vehicles. IFAC Papers Online. 51(29), 86–91 (2018)

    Article  Google Scholar 

  14. Ghavidel, H.F., Kalat, A.A.: Robust control for MIMO hybrid dynamical system of underwater vehicles by composite adaptive fuzzy estimation of uncertainties. Nonlinear Dyn. 89(4), 2347–2365 (2017)

    Article  MathSciNet  Google Scholar 

  15. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Dynamic Positioning of Underwater Robotic Vehicles with Thruster Dynamics Compensation. Int. J. Adv. Robot. Syst (9)10 (2013)

  16. Bessa, W.M., Kreuzer, E., Lange, J., Pick, M.A., Solowjow, E.: Design and adaptive depth control of a micro diving agent. IEEE Robot. Aut. Lett. 2(4), 1871–1877 (2017)

    Article  Google Scholar 

  17. Bessa, W.M., Brinkmann, G., Duecker, D. -A., Kreuzer, E., Solowjow, E.: A biologically inspired framework for the intelligent control of mechatronic systems and its application to a micro diving agent. Math. Probl. Eng. 2018 Article ID 9648126 (2018)

  18. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. MIT Press, London (2006)

    MATH  Google Scholar 

  19. Marco, A., Henning, P., Bohg, J., Schaal, S., Trimpe, S.: Automatic LQR tuning based on Gaussian process global optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 270–277 (2016)

  20. Marco, A., Henning, P., Schaal, S., Trimpe, S.: On the design of LQR kernels for efficient controller learning. In: Proceedings of the IEEE 56th Annual Conference on Decision and Control, pp. 5193–5200 (2017)

  21. Neumann-Brosing, M., Marco, A., Schwarzmann, D., Trimpe, S.: Data-efficient auto-tuning with Bayesian optimization: An industrial control study. IEEE Trans. Control. Syst Technol (2019)

  22. Cho, K., Oh, S.: Learning-based model predictive control under signal temporal logic specifications. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 7322–7329 (2018)

  23. Klenske, E.D., Zeilinger, M.N., Schölkopf, B., Hennig, P.: Gaussian Process-Based Predictive Control for Periodic Error Correction. IEEE Trans. Control Syst. Technol. 24(1), 110–121 (2016)

    Article  Google Scholar 

  24. Kocijan, J., Murray-Smith, R., Rasmussen, C.E., Girard, A.: Gaussian process model based predictive control. In: Proceedings of the American Control Conference, pp. 2214–2219 (2004)

  25. Liu, M., Chowdhary, G., Castro da Silva, B., Liu, S., How, J.P.: Gaussian processes for learning and control: A tutorial with examples. IEEE Control Syst. Mag. 38(5), 53–86 (2018)

    Article  MathSciNet  Google Scholar 

  26. Joshi, G., Chowdhary, G.: Adaptive control using gaussian-process with model reference generative network. In: Proceedings of the IEEE Conference on Decision and Control, pp. 237–243 (2018)

  27. Healey, A.J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)

    Article  Google Scholar 

  28. Christi, R., Papoulias, F.A., Healey, A.J.: Adaptive sliding mode control of autonomous underwater vehicles in dive plane. IEEE J. Ocean. Eng. 15(3), 152–160 (1990)

    Article  Google Scholar 

  29. Yoerger, D.R., Slotine, J.J.E.: Robust trajectory control of underwater vehicles. IEEE J. Ocean. Eng. 10 (4), 462–470 (1985)

    Article  Google Scholar 

  30. Bessa, W.M.: Some remarks on the boundedness and convergence properties of smooth sliding mode controllers. Int. J. Autom. Comp. 2(6), 154–158 (2009)

    Article  Google Scholar 

  31. Aran, V., Unel, M.: Gaussian process regression feedforward controller for diesel engine airpath. Int. J. Automot. Technol. 4(19), 635–642 (2018)

    Article  Google Scholar 

  32. Lima, G.S., Bessa, W.M., Trimpe, S.: Depth control of underwater robots using sliding modes and gaussian process regression. IEEE LARS (2018)

  33. Hsu, L., Costa, R.R., Lizarralde, F., Cunha, J.P.V.S.: Dynamic positioning of remotely operated underwater vehicles. IEEE Robot. Autom. Mag. 7(3), 21–31 (2000)

    Article  Google Scholar 

  34. Zanoli, S.M., Conte, G.: Remotely operated vehicle depth control. Control. Eng. Pract. 11, 453–459 (2003)

    Article  Google Scholar 

  35. Guo, J., Chiu, F.C., Huang, C.C.: Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. Ocean. Eng. 30, 2137–2155 (2003)

    Article  Google Scholar 

  36. Newman, J.N.: Marine Hydrodynamics, 5th edn. MIT Press, Massachusetts (1986)

    Google Scholar 

  37. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)

    MATH  Google Scholar 

  38. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New Jersey (2001)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Alexander von Humboldt Foundation [3.2-BRA/1159879 STPCAPES], the Brazilian Coordination for the Improvement of Higher Education Personnel [BEX 8136/14-9], and the Brazilian National Council for Scientific and Technological Development [308429/2017-6].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel S. Lima.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, G.S., Trimpe, S. & Bessa, W.M. Sliding Mode Control with Gaussian Process Regression for Underwater Robots. J Intell Robot Syst 99, 487–498 (2020). https://doi.org/10.1007/s10846-019-01128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01128-5

Keywords

Mathematics Subject Classification (2010)

Navigation