[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

An Evolutionary Approach to Time-Optimal Control of Robotic Manipulators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Time-optimal control of robotic manipulators along specified paths is a well-known problem in robotics. It concerns the minimization of the trajectory-tracking time subject to a constrained path and actuator torque limits. Calculus of variations reveals that time-optimal control is of bang-bang type, meaning that at least one actuator is in saturation for every point on the path. Unfortunately, this rule is broken at singular points, where the enforcement of the maximal and/or minimal torque at the bounding actuator would cause the violation of the path constraint. At these particular points, and, sometimes, at critical ones too, the selection of the torques is cumbersome and may introduce jitters in the control references. In this paper, the time-optimal control is addressed in the phase plane with a genetic approach. Results of calculus of variations are ignored and bang-bang control is re-found for the most of the trajectory, while in the neighborhoods of singular points, torques are automatically selected in order to minimize the trajectory-tracking time. Compared to other techniques, the problem is solved directly, without intermediate steps requiring, for example, the explicit computation of the switching points and the management of torques at critical points. The algorithm is validated in simulation on a canonical 2R planar robot in order to ease the comparison with previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Al-Taharwa, I., Sheta, A., Al-Weshah, M.: A mobile robot path planning using genetic algorithm in static environment. J. Comput. Sci. 4(4), 341–344 (2008). https://doi.org/10.3844/jcssp.2008.341.344

    Article  Google Scholar 

  2. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002). https://doi.org/10.1109/TEVC.2002.800880

    Article  Google Scholar 

  3. Baba, N., Kubota, N.: Collision avoidance planning of a robot manipulator by using genetic algorithm - a consideration for the problem in which moving obstacles and/or several robots are included in the workspace. In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. https://doi.org/10.1109/icec.1994.349970, pp 714–719. IEEE (1994)

  4. Bobrow, J.E., Dubowsky, S., Gibson, J.S.: Time-optimal control of robotic manipulators along specified paths. Int. J. Robot. Res. 4(3), 3–17 (1985). https://doi.org/10.1177/027836498500400301

    Article  Google Scholar 

  5. Burjorjee, K.M.: Generative fixation: a unifed explanation for the adaptive capacity of simple recombinative genetic algorithms. Phd thesis, Brandeis University (2009)

  6. Cantú-Paz, E., Goldberg, D.E.: On the scalability of parallel genetic algorithms. Evol. Comput. 7(4), 429–449 (1999). https://doi.org/10.1162/evco.1999.7.4.429

    Article  Google Scholar 

  7. Casalino, A., Zanchettin, A.M., Rocco, P.: Online planning of optimal trajectories on assigned paths with dynamic constraints for robot manipulators. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2016). https://doi.org/10.1109/iros.2016.7759168

  8. Chen, Y., Chien, S.Y.P., Desrochers, A.A.: General structure of time-optimal control of robotic manipulators moving along prescribed paths. Int. J. Control 56(4), 767–782 (1992). https://doi.org/10.1080/00207179208934342

    Article  MathSciNet  Google Scholar 

  9. Craenen, B., Eiben, A., Marchiori, E.: How to handle constraints with evolutionary algorithms. In: Practice Handbook on Genetic Algorithms. https://doi.org/10.1201/9781420035568.ch10. Chapman and Hall/CRC (2000)

  10. De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: Biological invasion-inspired migration in distributed evolutionary algorithms. Inf. Sci. 207, 50–65 (2012). https://doi.org/10.1016/j.ins.2012.04.027

    Article  Google Scholar 

  11. De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: An adaptive invasion-based model for distributed differential evolution. Inf. Sci. 278, 653–672 (2014). https://doi.org/10.1016/j.ins.2014.03.083

    Article  MathSciNet  Google Scholar 

  12. Dong, J., Stori, J.A.: A generalized time-optimal bidirectional scan algorithm for constrained feed-rate optimization. J. Dyn. Syst. Meas. Control 128(2), 379–390 (2006). https://doi.org/10.1115/1.2194078

    Article  Google Scholar 

  13. Kazem, B.I., Mahdi, A.I., Oudah, A.T.: Motion planning for a robot arm by using genetic algorithm. Jordan J. Mech. Ind. Eng. 2(3), 131–136 (2008)

    Google Scholar 

  14. Kim, S.J., Choi, D.S., Ha, I.J.: A comparison principle for state-constrained differential inequalities and its application to time-optimal control. IEEE Trans. Autom. Control 50(7), 967–983 (2005). https://doi.org/10.1109/tac.2005.851434

    Article  MathSciNet  MATH  Google Scholar 

  15. Krishnan, P.S., Paw, J.K.S., Kiong, T.S.: Cognitive map approach for mobility path optimization using multiple objectives genetic algorithm. In: 4th International Conference on Auton. Robot. Agents. https://doi.org/10.1109/icara.2000.4803970. IEEE (2009)

  16. Lee, Y.D., Lee, B.H., Kim, H.G.: An evolutionary approach for time optimal trajectory planning of a robotic manipulator. Inf. Sci. 113(3-4), 245–260 (1999). https://doi.org/10.1016/s0020-0255(98)10052-x

    Article  Google Scholar 

  17. Mitchell, M.: An introduction to genetic algorithms. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  18. Obradović, A., Vuković, J., Mladenović, N., Mitrović, Z.: Time optimal motions of mechanical system with a prescribed trajectory. Meccanica 46(4), 803–816 (2010). https://doi.org/10.1007/s11012-010-9339-3

    Article  MathSciNet  Google Scholar 

  19. Pfeiffer, F., Johanni, R.: A concept for manipulator trajectory planning. IEEE J. Robot. Autom. 3(2), 115–123 (1987). https://doi.org/10.1109/jra.1987.1087090

    Article  Google Scholar 

  20. Pham, H., Pham, Q.C.: On the structure of the time-optimal path parameterization problem with third-order constraints. In: 2017 IEEE International Conference on Robot. Autom (ICRA). IEEE (2017). https://doi.org/10.1109/icra.2017.7989084

  21. Pham, Q.C.: A general, fast, and robust implementation of the time-optimal path parameterization algorithm. IEEE Trans. Robot. 30(6), 1533–1540 (2014). https://doi.org/10.1109/tro.2014.2351113

    Article  Google Scholar 

  22. Reiter, A., Gattringer, H., Müller, A.: Redundancy resolution in minimum-time path tracking of robotic manipulators. In: Proceedings of the 13th International Conference on Information Control Autom. Robot, pp. 61–68. SCITEPRESS - Science and Technology Publications. https://doi.org/10.5220/0005975800610068 (2016)

  23. Reiter, A., Müller, A., Gattringer, H.: Inverse kinematics in minimum-time trajectory planning for kinematically redundant manipulators. In: IECON 2016 - 42nd Annual Conference on IEEE Ind. Electron. Soc, pp 6873–6878. IEEE (2016). https://doi.org/10.1109/iecon.2016.7793436

  24. Reiter, A., Müller, A., Gattringer, H.: On higher order inverse kinematics methods in time-optimal trajectory planning for kinematically redundant manipulators. IEEE Trans. Ind. Inform. 14(4), 1681–1690 (2018). https://doi.org/10.1109/tii.2018.2792002

    Article  Google Scholar 

  25. Shiller, Z.: On singular time-optimal control along specified paths. IEEE Trans. Robot. Autom. 10(4), 561–566 (1994). https://doi.org/10.1109/70.313107

    Article  Google Scholar 

  26. Shiller, Z., Lu, H.H.: Computation of path constrained time optimal motions with dynamic singularities. J. Dyn. Syst. Meas. Control 114(1), 34–40 (1992). https://doi.org/10.1115/1.2896505

    Article  MATH  Google Scholar 

  27. Shin, K., McKay, N.: Minimum-time control of robotic manipulators with geometric path constraints. IEEE Trans. on Autom Control 30(6), 531–541 (1985). https://doi.org/10.1109/tac.1985.1104009

    Article  Google Scholar 

  28. Shin, K., McKay, N.: A dynamic programming approach to trajectory planning of robotic manipulators. IEEE Trans. Autom. Control 31(6), 491–500 (1986). https://doi.org/10.1109/tac.1986.1104317

    Article  Google Scholar 

  29. Shin, K., McKay, N.: Robust trajectory planning for robotic manipulators under payload uncertainties. IEEE Trans. Autom. Control 32(12), 1044–1054 (1987). https://doi.org/10.1109/tac.1987.1104523

    Article  Google Scholar 

  30. Singh, S., Leu, M.C.: Optimal trajectory generation for robotic manipulators using dynamic programming. J. Dyn. Syst. Meas. Control 109(2), 88 (1987). https://doi.org/10.1115/1.3143842

    Article  MATH  Google Scholar 

  31. Slotine, J.J.E., Yang, H.S.: Improving the efficiency of time-optimal path-following algorithms. IEEE Trans. Robot. Autom. 5(1), 118–124 (1989). https://doi.org/10.1109/70.88024

    Article  Google Scholar 

  32. Storn, R., Price, K.V.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  33. Tu, J., Yang, S.: Genetic algorithm based path planning for a mobile robot. In: Proceedings of the IEEE International Conference on Robot. Autom, vol. 1, pp 1221–1226. IEEE (2003). https://doi.org/10.1109/robot.2003.1241759

  34. Verscheure, D., Demeulenaere, B., Swevers, J., Schutter, J.D., Diehl, M.: Time-optimal path tracking for robots: a convex optimization approach. IEEE Trans. Autom. Control 54(10), 2318–2327 (2009). https://doi.org/10.1109/tac.2009.2028959

    Article  MathSciNet  MATH  Google Scholar 

  35. Zlajpah, L.: On time optimal path control of manipulators with bounded joint velocities and torques. In: Proceedings of the IEEE International Conference on Robot. Autom, pp 1572–1577. IEEE (1996). https://doi.org/10.1109/robot.1996.506928

Download references

Funding

Ferrentino’s Ph.D. grant (CUP D49D17000250006) is funded by Italian Ministry of University (MIUR) in the frame of the Research and Innovation National Operational Program (PON 2014-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Ferrentino.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrentino, E., Della Cioppa, A., Marcelli, A. et al. An Evolutionary Approach to Time-Optimal Control of Robotic Manipulators. J Intell Robot Syst 99, 245–260 (2020). https://doi.org/10.1007/s10846-019-01116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01116-9

Keywords

Navigation