[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

An informational approach for sensor and actuator fault diagnosis for autonomous mobile robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a model-based fault detection and isolation (FDI) method is proposed, with the objective to ensure a fault-tolerant autonomous mobile robot navigation. The proposed solution uses an informational framework, which is able to detect and isolate both sensor and actuator faults, including the case of multiple faults occurrence. An information filter with a prediction model based on encoders data is adopted. For the diagnosis layer, a bank of filters are used. Residuals are generated by computing the Kullback-Leibler Divergence between the probability distribution of the predicted estimation with updated estimation obtained from sensors measurements. In order to isolate encoder and actuator faults, a secondary information filter with a prediction model based on a closed-loop controller is added. An additional bank of filters is developed, and extra residuals based on the Kullback-Leibler Divergence are generated. In the proposed method, the two designed filters supervise each other, which improves fault diagnosis, by taking into account all available information of the system, from control objective to multi-sensor data fusion. Actuator and sensor faults are treated within the same frame during the fusion process, and multiple faults occurrence is considered. A real-time experimentation on a real differential mobile robot is performed and demonstrates the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Verma, V., Gordon, G., Simmons, R., Thrun, S.: Real-time fault diagnosis [robot fault diagnosis]. IEEE Robot. Autom. Mag. 11(2), 56–66 (2004)

    Article  Google Scholar 

  2. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32(2), 229–252 (2008)

    Article  Google Scholar 

  3. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control, pp. 2015–695. Springer

  4. Ding, S.: Model-based fault diagnosis techniques: design schemes, algorithms, and tools. Springer Science and Business Media (2008)

  5. Jiang, L.: Sensor fault detection and isolation using system dynamics identification techniques. PhD thesis, The University of Michigan (2011)

  6. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.: A review of process fault detection and diagnosis. ii. qualitative models and search strategies. Comput. Chem. Eng. 27(3), 313–26 (2003)

    Article  Google Scholar 

  7. Chen, J., Patton, R., Zhang, H.: Design of unknown input observers and robust fault detection filters. Int. J. Control 63, 85–105 (2007)

    Article  MathSciNet  Google Scholar 

  8. Frank, P.M., Ding, X.: Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. Process Control 7(6), 403–424 (1997)

    Article  Google Scholar 

  9. Zhang, K., Jiang, B., Shi, P., Cocquempot, V.: Observer-Based Fault Estimation Techniques. In: Springer Nature, Studies in Systems, Decision and Control (2018)

  10. Isermann, R.: Model-based fault-detection and diagnosis – status and applications. Annu. Rev. Control. 29 (1), 71–85 (2005)

    Article  Google Scholar 

  11. Dixon, W.E., Walker, I.D., Dawson, D.M., Hartranft, J.P.: Fault detection for robot manipulators with parametric uncertainty: a Prediction-Error-Based approach. In: IEEE Transactions on Robotics and Automation, 16(6) (2000)

  12. Boulkroune, B., Aitouche, A., Cocquempot, V.: Observer design for nonlinear Parameter-Varying systems. Application to Diesel Engines. Int. J. Adapt. Control Signal Process. 29(2), 143–157 (2015)

    Article  MathSciNet  Google Scholar 

  13. Sotomayor, O.A.Z., Odloak, D.: Observer-based fault diagnosis in chemical plants. Chem. Eng. J. 112 (1–3), 93–108 (2005)

    Article  Google Scholar 

  14. Lunze, J., Schröder, J.: Sensor and actuator fault diagnosis of systems with discrete inputs and outputs. IEEE Trans. Syst. Man Cybern., Part B (Cybern.) 34(2), 1096–1107 (2004)

    Article  Google Scholar 

  15. Ma, H., Liu, Y., Li, T., Yang, G.: Nonlinear High-Gain Observer-Based Diagnosis and Compensation for Actuator and Sensor Faults in a Quadrotor Unmanned Aerial Vehicle. IEEE Trans. Ind. Inf. 15(1), 550–562 (2019)

    Article  Google Scholar 

  16. Talebi, H.A., Khorasani, K., Tafazoli, S.: A Recurrent Neural-Network-Based Sensor and Actuator Fault Detection and Isolation for Nonlinear Systems With Application to the Satellite’s Attitude Control Subsystem. IEEE Trans. Neural Netw. 20(1), 45–60 (2009)

    Article  Google Scholar 

  17. Roumeliotis, S.I., Sukhatme, G.S., Bekey, G.A.: Fault Detection and Identification in a Mobile Robot using Multiple model estimation. Proceedings ofthe IEEE International Conference on Robotics and Automation, Leuven, Belgium (1998)

  18. Yutian, L., Jungan, C.: Integrated Fault Diagnosis Method of Mobile Robot. In: Communications in Computer and Information Science, pp. 164 (2011)

  19. Fourlas, G.K., Karras, G.C., Kyriakopoulos, K.J.: Sensors Fault Diagnosis in Autonomous Mobile Robots Using Observer Based Technique. In: International Conference on Control, Automation and Robotics. ICRA

  20. Cai, Z., Duan, Z., Cai, J., Zou, X., Yu, J.: A multiple particle filters method for fault diagnosis of mobile robot dead-reckoning system. IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alta (2005)

  21. Verma, V., Gordon, G., Simmons, R.: Efficient Monitoring for Planetary Rovers. In: International Symposium on Artificial Intelligence and Robotics in Space. IEEE Computer Society Press (2003)

  22. Abci, B., Al Hage, J., El Badaoui El Najjar, M., Cocquempot, V.: Multi-Robot Autonomous Navigation System Using Informational Fault Tolerant Multi-Sensor Fusion with Robust Closed Loop Sliding Mode Control. 21St International Conference on Information Fusion, Cambridge (2018)

  23. Loureiro, R., Merzouki, R., Bouamama, B.O.: Bond Graph Model Based on Structural Diagnosability and Recoverability Analysis: Application to Intelligent Autonomous Vehicles. IEEE Trans. Veh. Technol. 61(3), 986–997 (2012)

    Article  Google Scholar 

  24. Mellah, S., Graton, G., El Adel, E.M., Ouladsine, M., Planchais, A.: On fault detection and isolation applied on unicycle mobile robot sensors and actuators. 7th International conference on Systems and Control (ICSC) Valencia, Spain, IEEE (2018)

  25. Agosta, J.M., Weiss, J.J.: Active Fusion for Diagnosis Guided by Mutual Information Measures. 2Nd International Conference on Information Fusion, Santa Clara, California (1999)

  26. Zeroual, A., Harrou, F., Sun, Y., Messai, N.: Integrating Model-Based Observer and Kullback–Leibler Metric for Estimating and Detecting Road Traffic Congestion. IEEE Sens. J. 18(20), 8605–8616 (2018)

    Article  Google Scholar 

  27. Grivel, E., Saleh, M., Omar, S.: Jeffrey’s divergence between complex-valued sinusoidal processes. 2017 25th European Signal Processing Conference (EUSIPCO) Kos (2017)

  28. Amari, S.: α -Divergence Is Unique, Belonging to Both f -Divergence and Bregman Divergence Classes. IEEE Trans. Inf. Theory 55(11), 4925–4931 (2009)

    Article  MathSciNet  Google Scholar 

  29. Diallo, D., Delpha, C.: Incipient offset current sensor fault detection and diagnosis using statistical analysis and the Kullback Leibler divergence for AC drive. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, pp. 8070–8075 (2017)

  30. Harmouche, J., Delpha, C., Diallo, D., Le Bihan, Y.: Statistical Approach for Nondestructive Incipient Crack Detection and Characterization Using Kullback-Leibler Divergence. IEEE Trans. Reliab. 65(3), 1360–1368 (2016)

    Article  Google Scholar 

  31. Giantomassi, A., Ferracuti, F., Iarlori, S., Ippoliti, G., Longhi, S.: Electric Motor Fault Detection and Diagnosis by Kernel Density Estimation and Kullback–Leibler Divergence Based on Stator Current Measurements. IEEE Trans. Ind. Electron. 62(3), 1770–1780 (2015)

    Article  Google Scholar 

  32. Carlone, L., Du, J., Kaouk Ng, M., Bona, B., Indri, M.: An application of Kullback-Leibler divergence to active SLAM and exploration with Particle Filters. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei (2010)

  33. Martín, F., Moreno, L., Blanco, D., Munoz, M.L.: Kullback–Leibler divergence-based global localization for mobile robots. Robot. Auton. Syst. 62(2), 120–130 (2014)

    Article  Google Scholar 

  34. Hage Al, J., El Badaoui El Najjar, M., Pomorski, D.: Multi-Sensor Fusion Approach with Fault Detection and Exclusion based on the Kullback-Leibler Divergence: Application on Collaborative Multi-Robot System. Inf. Fusion 37, 61–76 (2017)

    Article  Google Scholar 

  35. Thrun, S., Koller, D., Ghahramani, Z., Durrant-Whyte, H., Ng, A.Y.: Simultaneous Mapping and Localization with Sparse Extended Information Filters: Theory and Initial Results. In: book Algorithmic Foundations of Robotics V, pp 363–380. Springer, Berlin (2004)

    Google Scholar 

  36. van Erven, T., Harremos, P.: Rényi Divergence and Kullback-Leibler Divergence. In: IEEE Transactions on Information Theory (2014)

  37. Ma, Y., Zheng, G., Perruquetti, W., Qiu, Z.: Motion planning for non-holonomic mobile robots using the i-PID controller and potential field. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago (2014)

  38. Davidek, D., Klecka, J., Horak, K., Novacek, P.: Odometer module for mobile robot with position error estimation. IFAC-PapersOnLine 49(25), 346–351 (2016)

    Article  Google Scholar 

  39. Zhang, X., Glennie, C., Kusari, A.: Change Detection From Differential Airborne LiDAR Using a Weighted Anisotropic Iterative Closest Point Algorithm. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(7), 3338–3346 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boussad Abci.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abci, B., El Badaoui El Najjar, M., Cocquempot, V. et al. An informational approach for sensor and actuator fault diagnosis for autonomous mobile robots. J Intell Robot Syst 99, 387–406 (2020). https://doi.org/10.1007/s10846-019-01099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01099-7

Keywords

Navigation