[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Simultaneous Merging Multiple Grid Maps Using the Robust Motion Averaging

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Mapping in the GPS-denied environment is an important and challenging task in the field of robotics. In the large environment, mapping can be significantly accelerated by multiple robots exploring different parts of the environment. Accordingly, a key problem is how to integrate these local maps built by different robots into a single global map. In this paper, we propose an approach for simultaneous merging of multiple grid maps by the robust motion averaging. The main idea of this approach is to recover all global motions for map merging from a set of relative motions. Therefore, it firstly adopts the pair-wise map merging method to estimate relative motions for grid map pairs. To obtain as many reliable relative motions as possible, a graph-based sampling scheme is utilized to efficiently remove unreliable relative motions obtained from the pair-wise map merging. Subsequently, the accurate global motions can be recovered from the set of reliable relative motions by the motion averaging. Experimental results carried on real robot data sets demonstrate that the proposed approach can achieve simultaneous merging of multiple grid maps with good performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Smith, R., Self, M., Cheeseman, P.: A stochastic map for uncertain spatial relationships. Int. Symp. Robot. Res., 467–474 (1988)

  2. Wen, L.D.L., Jarvis, R.: A pure vision-based topological SLAM system. Int. J. Robot. Res. 31(4), 403–428 (2012)

    Article  Google Scholar 

  3. Alitappeh, R.J., Pereira, G.A.S., Arajo, A.R., et al.: Multi-robot deployment using topological maps. J. Intell. Robot. Syst. 86(3–4), 641–661 (2017)

    Article  Google Scholar 

  4. Collins, T.: Occupancy grid learning using contextual forward modelling. J. Intell. Robot. Syst. 64(3–4), 505–542 (2011)

    Article  Google Scholar 

  5. Carlone, L., Ng, M.K., Du, J., et al.: Simultaneous localization and mapping using rao-blackwellized particle filters in multi robot systems. J. Intell. Robot. Syst. 63(2), 283–307 (2011)

    Article  Google Scholar 

  6. Choudhary, S., Carlone, L., Nieto, C., et al.: Multi robot object-based SLAM. Int. Symp. Exper. Robot., 729–741 (2016)

  7. Lazaro, M.T., Paz, L.M., Pinies, P., et al.: Multi-robot SLAM using condensed measurements. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS) 40(6), 1069–1076 (2013)

    Google Scholar 

  8. Saeedi, S., Trentini, M., Seto, M., et al.: Multiple-robot simultaneous localization and mapping: A review. J. Field Robot. 33(1), 3–46 (2016)

    Article  Google Scholar 

  9. Carpin, S., Birk, A., Jucikas, V.: On map merging. Robot. Auton. Syst. 53(1), 1–14 (2005)

    Article  Google Scholar 

  10. Birk, A., Carpin, S.: Merging occupancy grid maps from multiple robots. Proc. IEEE 94(7), 1384–1397 (2006)

    Article  Google Scholar 

  11. Li, H., Tsukada, M., Nashashibi, F., Parent, M.: Multivehicle cooperative local mapping: A methodology based on occupancy grid map merging. IEEE Trans. Intell. Transp. Syst. 15(5), 2089–2100 (2014)

    Article  Google Scholar 

  12. Carpin, S.: Fast and accurate map merging for multi-robot systems. Auton. Robot. 25(3), 305–316 (2008)

    Article  Google Scholar 

  13. Zhu, J., Du, S., Ma, L., et al.: Merging grid maps via point set registration. Int. J. Robot. Autom. 28 (2), 180–191 (2013)

    Google Scholar 

  14. Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: The trimmed iterative closest point algorithm. Image Vis. Comput. 23(3), 299–309 (2005)

    Article  Google Scholar 

  15. Phillips, J.M., Liu, R., Tomasi, C.: Outlier robust ICP for minimizing fractional RMSD. In: Sixth International Conference on 3-D Digital Imaging and Modeling, pp. 427–434 (2007)

  16. Blanco, J.L., Gonzlezjimnez, J., Fernndezmadrigal, J.A.: A robust, multi-hypothesis approach to matching occupancy grid maps. Robotica 31(5), 687–701 (2013)

    Article  Google Scholar 

  17. Saeedi, S., Paull, L., Trentini, M., et al.: Map merging for multiple robots using Hough peak matching. Robot. Auton. Syst. 62(10), 1408–1424 (2014)

    Article  Google Scholar 

  18. Ma, L., Zhu, J., Zhu, L., et al.: Merging grid maps of different resolutions by scaling registration. Robotica 34(11), 2516–2531 (2016)

    Article  MathSciNet  Google Scholar 

  19. Lei, H., Jiang, G., Quan, L.: Fast descriptors and correspondence propagation for robust global point cloud registration. IEEE Trans. Image Process. 26(8), 3614–3623 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Zhu, J., Zhu, L., Li, Z.: Automatic multi-view registration of unordered range scans without feature extraction. Neurocomputing 171(C), 1444–1453 (2016)

    Article  Google Scholar 

  21. Evangelidis, G.D., Kounades-Bastian, D., Horaud, R., Psarakis, E.Z.: A generative model for the joint registration of multiple point sets. Proc. European Conf. Comput. Vis. (ECCV) 8695, 109–122 (2014)

    Google Scholar 

  22. Govindu, V.M., Pooja, A.: On averaging multiview relations for 3D scan registration. IEEE Trans. Image Process. 23(3), 1289–1302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhu, J: Surface reconstruction via efficient and accurate registration of multiview range scans. Opt. Eng. 53 (10), 102104 (2014)

    Article  Google Scholar 

  24. Arrigoni, F., Rossi, B., Fusiello, A.: Global registration of 3D point sets via LRS decomposition. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 489–501 (2016)

  25. Zhu, J., Zhu, L., Jiang, Z., et al.: Local to global registration of multi-view range scans using spanning tree. Comput. Electr. Eng. 58, 477–488 (2017)

    Article  Google Scholar 

  26. Govindu, V.M.: Lie-algebraic averaging for globally consistent motion estimation. Comput. Vis. Pattern Recogn. (CVPR) 1, I-684-I-691 (2004)

    Google Scholar 

  27. Govindu, V.M.: Robustness in motion averaging. Asian Conf. Comput. Vis. 3852, 457–466 (2006)

    Google Scholar 

  28. Zhu, J., Meng, D., Li, Z.: Robust registration of partially overlapping point sets via genetic algorithm with growth operator. IET Image Process. 8(10), 582–590 (2014)

    Article  Google Scholar 

  29. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  30. Brown, M.L., et al.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision 74(1), 59–73 (2007)

    Article  Google Scholar 

  31. Eliazar, A.I., Parr, R.: Hierarchical linear/constant time SLAM using particle filters for dense maps, NIPS, 339–346 (2005)

  32. Li, Z., Zhu, J., Lan, K., et al.: Improved techniques for multi-view registration with motion averaging. In: International Conference on 3d Vision, pp. 713–719 (2014)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant nos. 61573273 and 91648121, the Natural Science Foundation of Shaanxi Province of China under Grant no. 2015JM6301, the Fundamental Research Funds for Central Universities under Grant No. xjj2018214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 22.6 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Zhu, J., Li, Y. et al. Simultaneous Merging Multiple Grid Maps Using the Robust Motion Averaging. J Intell Robot Syst 94, 655–668 (2019). https://doi.org/10.1007/s10846-018-0895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0895-4

Keywords

Navigation