[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Robust Vibration Control and Angular Velocity Estimation of a Single-Axis MEMS Gyroscope Using Perturbation Compensation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper discusses a perturbation compensation-based robust vibration controller for single-axis MEMS gyroscope applications. The purpose is to obtain a robust and stable operation mode of the gyroscope and improve its capability in estimating time-varying angular velocities. First, based on the force-balancing operation mode, an estimator is designed for real-time identification of input angular velocities. Next, to facilitate the angular velocity sensing, a control system is designed that comprises a nominal controller gathered with a perturbation compensator. In the perturbation compensation stage, a nonlinear extended state observer (NESO) is designed to estimate the perturbations due to parametric uncertainty, undesired couplings, Coriolis acceleration and mechanical-thermal noises. In the nominal control stage, by applying the internal model principle, an output regulator is developed. The outputs of both NESO and nominal regulator are combined to attain the robust vibration control of the gyroscope. The closed-loop stability and robustness are analytically proved through Lyapunov’s direct method. To show the effectiveness of the proposed closed-loop operation mode, extensive numerical simulations are carried out by the experimental data of an inertial navigation system (INS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Doostdar, P., Keighobadi, J.: Design and implementation of SMO for a nonlinear MIMO AHRS. Mech. Syst. Signal Process. 32, 94–115 (2012)

    Article  Google Scholar 

  2. Zhanshe, G., Fucheng, C., Boyu, L., Le, C., Chao, L., Ke, S.: Research development of silicon MEMS gyroscopes: a review. Microsystem Technol. 21(10), 2053–2066 (2015)

    Article  Google Scholar 

  3. Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1658 (1998)

    Article  Google Scholar 

  4. Acar, C., Shkel, A.: MEMS vibratory gyroscopes: structural approaches to improve robustness. MEMS Reference Shelf. Springer, Boston (2009)

    Book  Google Scholar 

  5. Park, S., Horowitz, R.: Adaptive control for the conventional mode of operation of MEMS gyroscopes. J. Microelectromech. Syst. 12(1), 101–108 (2003)

    Article  Google Scholar 

  6. Shkel, A., Howe, R.T., Horowitz, R.: Modeling and Simulation of Micromachined Gyroscopes in The Presence of Imperfections. In: International Conference on Modeling and Simulation of Microsystems, pp. 605–608 (1999)

  7. Park, S., Horowitz, R.: Adaptive control for z-axis MEMS gyroscopes. In: Proceedings of the 2001 American Control Conference, pp. 1223–1228, Arlington (2001)

  8. Batur, C., Sreeramreddy, T., Khasawneh, Q.: Sliding mode control of a simulated MEMS gyroscope. ISA Trans. 45(1), 99–108 (2006)

    Article  Google Scholar 

  9. Fei, J., Batur, C.: A novel adaptive sliding mode control with application to MEMS gyroscope. ISA Trans. 48(1), 73–78 (2009)

    Article  Google Scholar 

  10. Fei, J., Yan, W.: Adaptive control of MEMS gyroscope using global fast terminal sliding mode control and fuzzy-neural-network. Nonlinear Dyn. 78(1), 103–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hosseini-Pishrobat, M., Keighobadi, J.: Force-balancing model predictive control of MEMS vibratory gyroscope sensor. Proc Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 230(17), 3055–3065 (2016)

    Article  Google Scholar 

  12. Zheng, Q., Dong, L., Gao, Z.: Control and Rotation Rate Estimation of Vibrational MEMS Gyroscopes. In: 2007 IEEE International Conference on Control Applications, pp. 118–123 (2007)

  13. Zheng, Q., Lee, D.H., Dong, L., Gao, Z.: Active Disturbance Rejection Control for MEMS Gyroscopes. IEEE Trans. Control Syst. Technol. 17(6), 1432–1438 (2009)

    Article  Google Scholar 

  14. Kwon, S., Chung, W.K.: Perturbation compensator based robust tracking control and state estimation of mechanical systems, Lecture Notes in Control and Information Sciences, vol. 307 Springer Science & Business Media (2004)

  15. Huang, Y., Xue, W.: Active disturbance rejection control: Methodology and theoretical analysis. ISA Trans. 53(4), 963–976 (2014)

    Article  MathSciNet  Google Scholar 

  16. Madoński, R., Herman, P.: Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Trans. 56, 18–27 (2015)

    Article  Google Scholar 

  17. Rodriguez-Fortun, J.M., Orus, J., Alfonso, J., Gimeno, F.B., Castellanos, J.A.: Flatness-based active vibration control for piezoelectric actuators. IEEE/ASME Trans. Mechatronics 18(1), 221–229 (2013)

    Article  Google Scholar 

  18. Wei, J.J., Qiu, Z.C., Han, J.D., Wang, Y.C.: Experimental Comparison Research on Active Vibration Control for Flexible Piezoelectric Manipulator Using Fuzzy Controller. J. Intell. Robot. Syst. 59(1), 31–56 (2010)

    Article  MATH  Google Scholar 

  19. He, W., Nie, S., Meng, T., Liu, Y.J.: Modeling and vibration control for a moving beam with application in a drilling riser. IEEE Trans. Control Syst. Technol. 25(3), 1036–1043 (2017)

    Article  Google Scholar 

  20. Zhao, Z., Liu, Y., Guo, F., Fu, Y.: Vibration control and boundary tension constraint of an axially moving string system. Nonlinear Dyn. 89(4), 2431–2440 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, W., He, X., Sun, C.: Vibration Control of an Industrial Moving Strip in the Presence of Input Deadzone. IEEE Trans. Ind. Electron. 64(6), 4680–4689 (2017)

    Article  Google Scholar 

  22. Zhao, Z., Liu, Y., He, W., Luo, F.: Adaptive boundary control of an axially moving belt system with high acceleration/deceleration. IET Control Theory Appl. 10(11), 1299–1306 (2016)

    Article  MathSciNet  Google Scholar 

  23. He, W., Meng, T., Huang, D., Li, X.: Adaptive Boundary Iterative Learning Control for an Euler-Bernoulli Beam System With Input Constraint. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–8 (2017)

    Google Scholar 

  24. He, W., Ouyang, Y., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Ind. Inform. 13(1), 48–59 (2017)

    Article  Google Scholar 

  25. He, W., Meng, T.: Adaptive Control of a Flexible String System With Input Hysteresis. IEEE Transactions on Control Systems Technology, PP(99), 1–8 (2017)

  26. Zhao, Z., Liu, Y., Luo, F.: Output feedback boundary control of an axially moving system with input saturation constraint. ISA Trans. 68, 22–32 (2017)

    Article  Google Scholar 

  27. Xin, M., Fei, J.: Adaptive vibration control for MEMS vibratory gyroscope using backstepping sliding mode control. J. Vibr. Control 21(4), 808–817 (2015)

    Article  MathSciNet  Google Scholar 

  28. He, W., Yin, Z., Sun, C.: Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier lyapunov function. IEEE Trans. Cybern. 47(7), 1641–1651 (2017)

    Article  Google Scholar 

  29. Isidori, A., Marconi, L., Serrani, A.: Robust Autonomous Guidance: An Internal Model Approach. Advances in Industrial Control Springer London (2003)

  30. Prasov, A.A., Khalil, H.K.: A nonlinear high-gain observer for systems with measurement noise in a feedback control framework. IEEE Trans. Autom. Control 58(3), 569–580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, Z., Huang, J.: Robust Output Regulation: A Framework. In: Stabilization and Regulation of Nonlinear Systems, Advanced Textbooks in Control and Signal Processing, chap. 7, pp. 197–237. Springer International Publishing (2015)

  32. Gabrielson, T.B.: Mechanical-thermal noise in micromachined acoustic and vibration sensors. IEEE Trans. Electron Devices 40(5), 903–908 (1993)

    Article  Google Scholar 

  33. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Studies in Applied Mathematics Society for Industrial and Applied Mathematics (1994)

  34. Khalil, H.K.: Nonlinear Systems, 3rd edn. Pearson Education, Prentice Hall (2002)

    MATH  Google Scholar 

  35. Musavi, N., Keighobadi, J.: Adaptive fuzzy neuro-observer applied to low cost INS/GPS. Appl. Soft Comput. 29, 82–94 (2015)

    Article  Google Scholar 

  36. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, version 2.1. http://cvxr.com/cvx (2014)

  37. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pp 95–110. Springer-Verlag Limited (2008)

  38. Park, S., Horowitz, R.: Discrete time adaptive control for a MEMS gyroscope. Int. J. Adapt. Control Signal Process. 19(2003), 485–503 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Guo, B.Z., liang Zhao, Z.: On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst. Control Lett. 60(6), 420–430 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Keighobadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini-Pishrobat, M., Keighobadi, J. Robust Vibration Control and Angular Velocity Estimation of a Single-Axis MEMS Gyroscope Using Perturbation Compensation. J Intell Robot Syst 94, 61–79 (2019). https://doi.org/10.1007/s10846-018-0789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0789-5

Keywords

Navigation