Abstract
Nonlinear aircraft controlled by its linearized model based controller will be asymptotically stable if its trajectories originating from various initial conditions are all contained in the stability region (or the region of attraction). In such a stable aircraft, suppose a sensor or an actuator fault occurs. Depending upon the fault size, the stability region is modified. As a result, the trajectories for a potential failure to contain in the modified stability region could lead to flight control degradation. In this paper, first, a stability margin is determined to separate an acceptable fault size from an unacceptable fault. Secondly, with an acceptable fault size, the aircraft will remain stable in distorted stability regions. In this paper, admissible control inputs which generate the perturbed trajectories in the distorted stability regions is presented for safe unmanned aerial vehicle flight control evaluations. A three degree of freedom aircraft in pitch plane is considered to illustrate the stability margins and control inputs that are safe to operate the damaged aircraft.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Oaks, O.J., Cook, G.: Piecewise linear control of nonlinear systems. IEEE Trans. Indust. Electron. Control Instrum. 23(1), 56–63 (1976)
Ashokkumar, C.R.: Trajectory options for MAV navigation. Int. J. Micro Air Veh. 4(4), 305–313 (2012)
Gibson, L.P., Nichols, N.K., Littleboy, D.M.: Bifurcation analysis of eigenstructure assignment control in a simple nonlinear aircraft model. J. Guid. Control, Dyn. 21(5), 792–798 (1998). doi:10.2514/2.4308
Chakraborty, A., Seiler, P., Balas, G.J.: Applications of linear and nonlinear robustness analysis techniques to the F/A-18 flight control laws. AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois (2009). AIAA 2009-5675. doi:10.2514/6.2009-5675
Khatri, A.K., Singh, J., Sinha, N.K.: Accessible regions for controlled aircraft maneuvering. J. Guid., Control, Dyn. 1, 1–5 (2013). doi:10.2514/1.59592
Ganguli, S., Ariyur, K.B., Enns, D.E.: Region of attraction with performance bounds, pp 10–13. AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois (2009). AIAA 2009-6191, doi:10.2514/6.2009-6191
Lu, B., Wu, F.: Switching-based fault-tolerant control for an F-16 aircraft with thrust vectoring, pp 8494–8499. 48th IEEE Conference on Decision and Control, Shangai, P.R. China (2009)
Alwi, H., Edwards, C.: Fault detection and fault–tolerant control of a civil aircraft using a sliding-mode-based scheme. IEEE Trans. Control Syst. Technol. 16(3), 499–510 (2008)
Blanke, M., Staroswiecki, M., Wu, N.E.: Concepts and methods in fault-tolerant control. In: the Proceedings of the American Control Conference, Arlington, VA, 2001, pp. 2606–2620
Campbell, S.E., Broeven, A.P., Bragg, M.B.: Sensitivity of aircraft performance to icing parameter variations. J. Air. 44(5), 1758–1760 (2007). doi:10.2514/1.32355
Wheaten, E.A., Bragg, M.B.: Aircraft characterization in icing using flight test data. J. Air. 42 (3), 792–794 (2005). doi:10.2514/1.11198
Lampton, A., Valasek, J.: Prediction of icing effects on the coupled dynamic response of little airplanes. J. Guid., Control, Dyn. 31(3), 656–673 (2008). doi:10.2514/1.31165
Lampton, A., Valasek, J.: Prediction of Icing Effects on the Dynamic Response of Little Airplanes. J. Guid., Control, Dyn. 30(3), 722–732 (2007). doi:10.2514/1.25687
Lampton, A., Valasek, J.: Prediction of icing effects on the lateral/directional stability and control of little airplanes. Aerosp. Sci. Technol. 23(1), 305–311 (2012)
Ashokkumar, C., York, W.P.G.: Aircraft navigation with uncertain aerodynamics. In: The Proceedings of the AIAA Atmospheric Flight Mechanics Conference, San Diego, AIAA-2016-1291 (2016)
Keel, L.H., Bhattacharyya, S.P.: Robust, fragile, or optimal?,. IEEE Trans. Autom. Control 42 (8), 1098–1105 (1997)
Chang, B.C., Kwatny, H.G., Thomas, S., Bajpai, G., Hu, D.C.: Reconfigurable control of aircraft in nonlinear flight regimes, pp 15–18. AIAA Guidance, Navigation, and Control Conference, San Francisco, CA (2005). AIAA 2005-6167, doi:10.2514/6.2005-6167
Kevin, C., Foster, J.V., Moreilli, E.A., Murch, A.M.: Practical application of a subscale transport aircraft for flight research in control upset and failure conditions, pp 18–21. AIAA Atmospheric Flight Mechanics Conference, Honolulu, Hawaii (2008). AIAA 2008-6200. doi:10.2514/6.2008-6200
Stevens B.L., Lewis F.L.: Aircraft control and simulation. Wiley, New York (1992). Chapters 1 and 2
Moore, B.: On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment. IEEE Trans. Autom. Control 21(5), 689–692 (1976)
Andry, A.N., Shapiro, E.Y., Chung, J.C.: Eigenstructure assignment for linear systems. IEEE Trans. Aerospace Electron. Syst. 19(5), 711–729 (1983)
Nieto-Wire, C., Sobel, K.: Eigenstructure assignment for a tailless aircraft, pp 20–23. AIAA Guidance, Navigation, and Control Conference and Exhibit, South Carolina, USA (2007). AIAA-2007-6417. doi:10.2514/6.2007-6417
Srinathkumar, S.: Eigenvalue/eigenvector assignment using output feedback. IEEE Trans. Autom. Control 23(1), 79–81 (1978)
Sobel, K.M., Shapiro, E.Y.: Eigenstructure assignment for design of multimode flight control systems. IEEE Control Syst. Mag. 5(2), 9–15 (1985)
Sobel, K.M., Shapiro, E.Y., Andry, Jr, A.N.: Eigenstructure assignment. Int. J. Control 59 (1), 13–37 (1994)
Ataei, M., Enshaee, A.: Eigenvalue assignment by minimal state-feedback gain in LTI multivariable systems. Int. J. Control 84(12), 1956–1964 (2011)
Liu, G.P., Patton, R.J.: Eigenstructure assignment for control system design. Wiley, (1998). Chapter 3
Bachelier, O., Bosche, J., Mehdi, D.: On pole placement via eigenstructure assignment approach. IEEE Trans. Autom. Control 51(9), 1554–1558 (2006)
Tarokh M.: Exact, approximate, optimized and constrained output feedback pole assignment, 45th Conference on Decision and Control, 2006, pp. 1405–1410
Datta, B.N., Sarkissian, D.R.: Multiple input partial eigenvalue assignment for the symmetric quadratic pencil. Pro. 1999 Am. Control Conf. 4, 2244–2247 (1999)
Datta, B.N., Sarkissian, D.R.: Feedback control in distributed parameter gyroscopic systems: A solution of the partial eigenvalue assignment. Mech. Syst. Signal Proces. 16, 3–17 (2002)
Datta, B.N.: Finite element model updating and partial eigenvalue assignment in structural dynamics: Recent developments on computational methods. Math. Model. Anal. , 15–27 (2005)
Qian, J., Xu, S.: Robust Partial Eigenvalue Assignment Problem for the Second Order System. J. Sound Vibr. 282, 937–948 (2005)
Xu, S., Qian, J.: Orthogonal basis selection method for robust partial eigenvalue assignment problem in second order control systems. J. Sound Vibr. 317, 1–19 (2008)
Bai, Z.J., Datta, B.N., Wang, J.: Robust and minimum norm partial quadratic eigenvalue assignment in vibrating systems: A new optimization approach. Mech0. Syst. Signal Process. 24, 766–783 (2010)
Satoh, A., Sugimoto, K.: Partial eigenstructure assignment approach for robust flight control. J. Guid., Control, Dyn. 27(1), 145–150 (2004). doi:10.2514/1.9341
Satoh, A., Sugimoto, K.: Loose eigenstructure assignment via rank-one LMI approach with application to transient response shaping in \(H_{\infty }\) control. Int. J. Control 82(3), 497–507 (2009)
Ashokkumar, C.R., Iyengar, N.G.R.: Partial eigenvalue assignment for structural damage mitigation. J. Sound Vibr. 330(1), 9–16 (2011)
Ashokkumar, C.R., York, W.P.G.: Trajectory transcriptions for potential autonomy features in UAV maneuvers. In: The proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, AIAA-2016- 0380 (2016)
Strang, G.: Linear algebra and its applications, 3rd edn., p 139. Harcourt Brace Jovanovich College Publishers, Philadelphia (1988)
Yedavalli, R.K.: Flight control applications of new stability robustness bounds for linear uncertain systems. J. Guid. Control Dyn. 16, 1032–1037 (1993)
Slotine, J.J.E., Li, W.: Applied nonlinear control, pp 83–86. Prentice Hall International Inc, New Jersey 07458 (1991)
Khalil, H.K.: Nonlinear systems, p 156. Prentice Hall Inc, New Jersey 07458 (1996)
Barnett, S.: Matrices in control theory, p 85. Van Nostrand Reinhold Company, London ()
Horn, RA, Johnson, C.R.: Matrix analysis, p 365. Cambridge University Press, (1985)
Ashokkumar, CR, Yedavalli, R.K.: Eigenstructure perturbations analysis in disjointed domains for linear uncertain systems. Int. J. Control 67(6), 887–899 (1997)
Langelaan, J.W.: Gust energy extraction for mini and micro uninhabited aerial vehicles. J. Guid., Control, Dyn. 32(2), 464–473 (2009). doi:10.2514/1.37735
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ashokkumar, C.R., York, G.W.P. Unmanned Aerial Vehicle Flight Control Evaluations Under Sensor and Actuator Faults. J Intell Robot Syst 88, 437–447 (2017). https://doi.org/10.1007/s10846-017-0514-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-017-0514-9