[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Unmanned Aerial Vehicle Flight Control Evaluations Under Sensor and Actuator Faults

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Nonlinear aircraft controlled by its linearized model based controller will be asymptotically stable if its trajectories originating from various initial conditions are all contained in the stability region (or the region of attraction). In such a stable aircraft, suppose a sensor or an actuator fault occurs. Depending upon the fault size, the stability region is modified. As a result, the trajectories for a potential failure to contain in the modified stability region could lead to flight control degradation. In this paper, first, a stability margin is determined to separate an acceptable fault size from an unacceptable fault. Secondly, with an acceptable fault size, the aircraft will remain stable in distorted stability regions. In this paper, admissible control inputs which generate the perturbed trajectories in the distorted stability regions is presented for safe unmanned aerial vehicle flight control evaluations. A three degree of freedom aircraft in pitch plane is considered to illustrate the stability margins and control inputs that are safe to operate the damaged aircraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Oaks, O.J., Cook, G.: Piecewise linear control of nonlinear systems. IEEE Trans. Indust. Electron. Control Instrum. 23(1), 56–63 (1976)

    Article  Google Scholar 

  2. Ashokkumar, C.R.: Trajectory options for MAV navigation. Int. J. Micro Air Veh. 4(4), 305–313 (2012)

    Article  Google Scholar 

  3. Gibson, L.P., Nichols, N.K., Littleboy, D.M.: Bifurcation analysis of eigenstructure assignment control in a simple nonlinear aircraft model. J. Guid. Control, Dyn. 21(5), 792–798 (1998). doi:10.2514/2.4308

  4. Chakraborty, A., Seiler, P., Balas, G.J.: Applications of linear and nonlinear robustness analysis techniques to the F/A-18 flight control laws. AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois (2009). AIAA 2009-5675. doi:10.2514/6.2009-5675

  5. Khatri, A.K., Singh, J., Sinha, N.K.: Accessible regions for controlled aircraft maneuvering. J. Guid., Control, Dyn. 1, 1–5 (2013). doi:10.2514/1.59592

  6. Ganguli, S., Ariyur, K.B., Enns, D.E.: Region of attraction with performance bounds, pp 10–13. AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois (2009). AIAA 2009-6191, doi:10.2514/6.2009-6191

  7. Lu, B., Wu, F.: Switching-based fault-tolerant control for an F-16 aircraft with thrust vectoring, pp 8494–8499. 48th IEEE Conference on Decision and Control, Shangai, P.R. China (2009)

    Google Scholar 

  8. Alwi, H., Edwards, C.: Fault detection and fault–tolerant control of a civil aircraft using a sliding-mode-based scheme. IEEE Trans. Control Syst. Technol. 16(3), 499–510 (2008)

    Article  Google Scholar 

  9. Blanke, M., Staroswiecki, M., Wu, N.E.: Concepts and methods in fault-tolerant control. In: the Proceedings of the American Control Conference, Arlington, VA, 2001, pp. 2606–2620

  10. Campbell, S.E., Broeven, A.P., Bragg, M.B.: Sensitivity of aircraft performance to icing parameter variations. J. Air. 44(5), 1758–1760 (2007). doi:10.2514/1.32355

  11. Wheaten, E.A., Bragg, M.B.: Aircraft characterization in icing using flight test data. J. Air. 42 (3), 792–794 (2005). doi:10.2514/1.11198

  12. Lampton, A., Valasek, J.: Prediction of icing effects on the coupled dynamic response of little airplanes. J. Guid., Control, Dyn. 31(3), 656–673 (2008). doi:10.2514/1.31165

  13. Lampton, A., Valasek, J.: Prediction of Icing Effects on the Dynamic Response of Little Airplanes. J. Guid., Control, Dyn. 30(3), 722–732 (2007). doi:10.2514/1.25687

  14. Lampton, A., Valasek, J.: Prediction of icing effects on the lateral/directional stability and control of little airplanes. Aerosp. Sci. Technol. 23(1), 305–311 (2012)

    Article  Google Scholar 

  15. Ashokkumar, C., York, W.P.G.: Aircraft navigation with uncertain aerodynamics. In: The Proceedings of the AIAA Atmospheric Flight Mechanics Conference, San Diego, AIAA-2016-1291 (2016)

  16. Keel, L.H., Bhattacharyya, S.P.: Robust, fragile, or optimal?,. IEEE Trans. Autom. Control 42 (8), 1098–1105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chang, B.C., Kwatny, H.G., Thomas, S., Bajpai, G., Hu, D.C.: Reconfigurable control of aircraft in nonlinear flight regimes, pp 15–18. AIAA Guidance, Navigation, and Control Conference, San Francisco, CA (2005). AIAA 2005-6167, doi:10.2514/6.2005-6167

  18. Kevin, C., Foster, J.V., Moreilli, E.A., Murch, A.M.: Practical application of a subscale transport aircraft for flight research in control upset and failure conditions, pp 18–21. AIAA Atmospheric Flight Mechanics Conference, Honolulu, Hawaii (2008). AIAA 2008-6200. doi:10.2514/6.2008-6200

  19. Stevens B.L., Lewis F.L.: Aircraft control and simulation. Wiley, New York (1992). Chapters 1 and 2

  20. Moore, B.: On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment. IEEE Trans. Autom. Control 21(5), 689–692 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Andry, A.N., Shapiro, E.Y., Chung, J.C.: Eigenstructure assignment for linear systems. IEEE Trans. Aerospace Electron. Syst. 19(5), 711–729 (1983)

    Article  Google Scholar 

  22. Nieto-Wire, C., Sobel, K.: Eigenstructure assignment for a tailless aircraft, pp 20–23. AIAA Guidance, Navigation, and Control Conference and Exhibit, South Carolina, USA (2007). AIAA-2007-6417. doi:10.2514/6.2007-6417

  23. Srinathkumar, S.: Eigenvalue/eigenvector assignment using output feedback. IEEE Trans. Autom. Control 23(1), 79–81 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sobel, K.M., Shapiro, E.Y.: Eigenstructure assignment for design of multimode flight control systems. IEEE Control Syst. Mag. 5(2), 9–15 (1985)

    Article  Google Scholar 

  25. Sobel, K.M., Shapiro, E.Y., Andry, Jr, A.N.: Eigenstructure assignment. Int. J. Control 59 (1), 13–37 (1994)

  26. Ataei, M., Enshaee, A.: Eigenvalue assignment by minimal state-feedback gain in LTI multivariable systems. Int. J. Control 84(12), 1956–1964 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, G.P., Patton, R.J.: Eigenstructure assignment for control system design. Wiley, (1998). Chapter 3

  28. Bachelier, O., Bosche, J., Mehdi, D.: On pole placement via eigenstructure assignment approach. IEEE Trans. Autom. Control 51(9), 1554–1558 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tarokh M.: Exact, approximate, optimized and constrained output feedback pole assignment, 45th Conference on Decision and Control, 2006, pp. 1405–1410

  30. Datta, B.N., Sarkissian, D.R.: Multiple input partial eigenvalue assignment for the symmetric quadratic pencil. Pro. 1999 Am. Control Conf. 4, 2244–2247 (1999)

    Google Scholar 

  31. Datta, B.N., Sarkissian, D.R.: Feedback control in distributed parameter gyroscopic systems: A solution of the partial eigenvalue assignment. Mech. Syst. Signal Proces. 16, 3–17 (2002)

    Article  Google Scholar 

  32. Datta, B.N.: Finite element model updating and partial eigenvalue assignment in structural dynamics: Recent developments on computational methods. Math. Model. Anal. , 15–27 (2005)

  33. Qian, J., Xu, S.: Robust Partial Eigenvalue Assignment Problem for the Second Order System. J. Sound Vibr. 282, 937–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, S., Qian, J.: Orthogonal basis selection method for robust partial eigenvalue assignment problem in second order control systems. J. Sound Vibr. 317, 1–19 (2008)

    Article  Google Scholar 

  35. Bai, Z.J., Datta, B.N., Wang, J.: Robust and minimum norm partial quadratic eigenvalue assignment in vibrating systems: A new optimization approach. Mech0. Syst. Signal Process. 24, 766–783 (2010)

    Article  Google Scholar 

  36. Satoh, A., Sugimoto, K.: Partial eigenstructure assignment approach for robust flight control. J. Guid., Control, Dyn. 27(1), 145–150 (2004). doi:10.2514/1.9341

  37. Satoh, A., Sugimoto, K.: Loose eigenstructure assignment via rank-one LMI approach with application to transient response shaping in \(H_{\infty }\) control. Int. J. Control 82(3), 497–507 (2009)

  38. Ashokkumar, C.R., Iyengar, N.G.R.: Partial eigenvalue assignment for structural damage mitigation. J. Sound Vibr. 330(1), 9–16 (2011)

    Article  Google Scholar 

  39. Ashokkumar, C.R., York, W.P.G.: Trajectory transcriptions for potential autonomy features in UAV maneuvers. In: The proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, AIAA-2016- 0380 (2016)

  40. Strang, G.: Linear algebra and its applications, 3rd edn., p 139. Harcourt Brace Jovanovich College Publishers, Philadelphia (1988)

    Google Scholar 

  41. Yedavalli, R.K.: Flight control applications of new stability robustness bounds for linear uncertain systems. J. Guid. Control Dyn. 16, 1032–1037 (1993)

    Article  MATH  Google Scholar 

  42. Slotine, J.J.E., Li, W.: Applied nonlinear control, pp 83–86. Prentice Hall International Inc, New Jersey 07458 (1991)

    MATH  Google Scholar 

  43. Khalil, H.K.: Nonlinear systems, p 156. Prentice Hall Inc, New Jersey 07458 (1996)

    Google Scholar 

  44. Barnett, S.: Matrices in control theory, p 85. Van Nostrand Reinhold Company, London ()

  45. Horn, RA, Johnson, C.R.: Matrix analysis, p 365. Cambridge University Press, (1985)

  46. Ashokkumar, CR, Yedavalli, R.K.: Eigenstructure perturbations analysis in disjointed domains for linear uncertain systems. Int. J. Control 67(6), 887–899 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Langelaan, J.W.: Gust energy extraction for mini and micro uninhabited aerial vehicles. J. Guid., Control, Dyn. 32(2), 464–473 (2009). doi:10.2514/1.37735

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chimpalthradi R. Ashokkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashokkumar, C.R., York, G.W.P. Unmanned Aerial Vehicle Flight Control Evaluations Under Sensor and Actuator Faults. J Intell Robot Syst 88, 437–447 (2017). https://doi.org/10.1007/s10846-017-0514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0514-9

Keywords

Navigation