Abstract
A practical approach for generating motion paths with continuous steering for car-like mobile robots is presented here. This paper addresses two key issues in robot motion planning; path continuity and maximum curvature constraint for nonholonomic robots. The advantage of this new method is that it allows robots to account for their constraints in an efficient manner that facilitates real-time planning. B-spline curves are leveraged for their robustness and practical synthesis to model the vehicle’s path. Comparative navigational-based analyses are presented to selected appropriate curve and nominate its parameters. Path continuity is achieved by utilizing a single path, to represent the trajectory, with no limitations on path, or orientation. The path parameters are formulated with respect to the robot’s constraints. Maximum curvature is satisfied locally, in every segment using a smoothing algorithm, if needed. It is demonstrated that any local modifications of single sections have minimal effect on the entire path. Rigorous simulations are presented, to highlight the benefits of the proposed method, in comparison to existing approaches with regards to continuity, curvature control, path length and resulting acceleration. Experimental results validate that our approach mimics human steering with high accuracy. Accordingly, efficiently formulated continuous paths ultimately contribute towards passenger comfort improvement. Using presented approach, autonomous vehicles generate and follow paths that humans are accustomed to, with minimum disturbances.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Reif, J.H.: Complexity of the mover’s problem and generalizations. In: Foundations of Computer Science, 1979., 20th Annual Symposium on, pp. 421–427 (1979)
Latombe, J.-C.: Motion Planning: A journey of robots, molecules, digital actors, and other artifacts. Int. J. Robot. Res. 18(11), 1119–1128 (1999). doi:10.1177/02783649922067753
Choset, H.M.: Principles of Robot Motion, Theory, Algorithms, and Implementation. Prentice Hall of India (2005)
Brooks, R.A., Lozano-Perez, T.: A subdivision algorithm in configuration space for findpath with rotation. IEEE Trans. Syst. Man Cybern. 15(2), 224–233 (1985). doi:10.1109/TSMC.1985.6313352
Canny, J.: A Voronoi method for the piano-movers problem. In: Robotics and Automation. Proceedings. 1985 IEEE International Conference on, pp. 530–535 (1985)
Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986). doi:10.1177/027836498600500106
Arkin, R.C.: Motor Schema Based Mobile Robot Navigation. Int. J. Robot. Res. 8(4), 92–112 (1989). doi:10.1177/027836498900800406
Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference on, vol. 1392, pp. 1398–1404 (1991)
Elbanhawi, M., Simic, M.: Sampling-based robot motion planning: a review. IEEE Access 2, 56–77 (2014). doi:10.1109/ACCESS.2014.2302442
Geraerts, R., Overmars, M.H.: Creating high-quality paths for motion planning. Int. J. Robot. Res. 26(8), 845–863 (2007). doi:10.1177/0278364907079280
Laumond, J.P., Sekhavat, S., Lamiraux, F.: Guidelines in nonholonomic motion planning for mobile robots. In: J.P. Laumond (ed.) Robot Motion Planning and Control, vol. 229. Lecture Notes in Control and Information Sciences, pp. 1–53. Springer Berlin Heidelberg (1998)
Cheng, P.: Sampling-based motion planning with differential constraints. Ph.D. University of Illinois at Urbana-Champaign (2005)
Wallace, R., Stentz, A., Thorpe, C., Moravec, H., Whittaker, W., Kanade, T.: First Results in Robot Road Following. In: 1985, pp. 381–387
Antonelli, G., Chiaverini, S., Fusco, G.: A fuzzy-logic-based approach for mobile robot path tracking. IEEE Trans. Fuzzy Syst. 15(2), 211–221 (2007)
Perez, J., Milanes, V., Onieva, E.: Cascade architecture for lateral control in autonomous vehicles. IEEE Intell. Transp. Syst. 12(1), 73–82 (2011). doi:10.1109/TITS.2010.2060722
Jazar, R.N.: Mathematical theory of autodriver for autonomous vehicles. J. Vib. Control. 16(2), 253–279 (2010)
Marzbani, H., Ahmad Salahuddin, M.H., Simic, M., Fard, M., Jazar, R.N.: Steady-state dynamic steering. In: Frontiers in Artificial Intelligence and Applications, vol. 262 (2014)
Cheein, F.A., Scaglia, G.: Trajectory Tracking Controller Design for Unmanned Vehicles: A New Methodology. Journal of Field Robotics, n/a-n/a. doi:10.1002/rob.21492 (2013)
Magid, E., Keren, D., Rivlin, E., Yavneh, I.: Spline-Based Robot Navigation. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pp. 2296–2301 (2006)
Roth, S., Batavia, P.: Evaluating Path Tracker Performance for Outdoor Mobile Robots. Paper presented at the Automation Technology for Off-Road Equipment, Chicago, Illinois, USA, 26–27/07
Lau, B., Sprunk, C., Burgard, W.: Kinodynamic motion planning for mobile robots using splines. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pp. 2427–2433 (2009)
Gulati, S., Kuipers, B.: High performance control for graceful motion of an intelligent wheelchair. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 3932–3938 (2008)
Berglund, T., Brodnik, A., Jonsson, H., Staffanson, M., Soderkvist, I.: Planning smooth and obstacle-avoiding b-spline paths for autonomous mining vehicles. IEEE Trans. Autom. Sci. Eng. 71), 167–172 (2010). doi:10.1109/TASE.2009.2015886
Maekawa, T., Noda, T., Tamura, S., Ozaki, T., Machida, K.-i.: Curvature continuous path generation for autonomous vehicle using B-spline curves. Comput. Aided Des. 42(4), 350–359 (2010) doi:10.1016/j.cad.2009.12.007
Sabelhaus, D., Röben, F., Meyer zu Helligen, L.P., Schulze Lammers, P.: Using continuous-curvature paths to generate feasible headland turn manoeuvres. Biosyst. Eng. 116(4), 399–409 (2013). doi:10.1016/j.biosystemseng.2013.08.012
Girbés, V., Armesto, L., Tornero, J.: Path following hybrid control for vehicle stability applied to industrial forklifts. Robot. Auton. Syst. 0 (2014). doi:10.1016/j.robot.2014.01.004
Xuan-Nam, B., Boissonnat, J.-d., Soueres, P., Laumond, J.P.: Shortest path synthesis for Dubins non-holonomic robot. In: Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, 8–13 1994, Vol. 1, pp. 2–7
Anderson, E.P., Beard, R.W., McLain, T.W.: Real-time dynamic trajectory smoothing for unmanned air vehicles. IEEE Trans. Control Syst. Technol. 13(3), 471–477 (2005). doi:10.1109/TCST.2004.839555
Myung, H., Kuffner, J., Kanade, T.: Efficient Two-phase 3D Motion Planning for Small Fixed-wing UAVs. In: Robotics and Automation, 2007 IEEE International Conference on, pp. 1035–1041 (2007)
LaValle, S.: Planning Algorithms. Cambridge University Press (2006)
Suzuki, Y., Kagami, S., Kuffner, J.J.: Path Planning with Steering Sets for Car-Like Robots and Finding an Effective Set. In: Robotics and Biomimetics, 2006. ROBIO ’06. IEEE International Conference on, pp. 1221–1226 (2006)
Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. J. Field Robot. 26(3), 308–333 (2009)
Fraichard, T., Scheuer, A.: From Reeds and Shepp’s to continuous-curvature paths. Robot. IEEE Trans. 20(6), 1025–1035 (2004). doi:10.1109/TRO.2004.833789
Wang, L.Z., Miura, K.T., Nakamae, E., Yamamoto, T., Wang, T.J.: An approximation approach of the clothoid curve defined in the interval [0, π/2] and its offset by free-form curves. Comput. Aided Des. 33(14), 1049–1058 (2001). doi:10.1016/S0010-4485(00)00142-1
Meek, D.S., Walton, D.J.: An arc spline approximation to a clothoid. J. Comput. Appl. Math. 170(1), 59–77 (2004) doi:10.1016/j.cam.2003.12.038
Montes, N., Herraez, A., Armesto, L., Tornero, J.: Real-time clothoid approximation by Rational Bezier curves. In: In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 2246–2251 (2008)
McCrae, J., Singh, K.: Sketching piecewise clothoid curves. Comput. Graph. 33(4), 452–461 (2009) doi:10.1016/j.cag.2009.05.006
Brezak, M., Petrovic, I.: Real-time approximation of clothoids with bounded error for path planning applications. IEEE Trans. Robot. PP(99), 1–9 (2013). doi:10.1109/TRO.2013.2283928
Farin, G.: From conics to NURBS: A tutorial and survey. IEEE Comput. Graph. Appl. 12(5), 78–86 (1992). doi:10.1109/38.156017
Piegl, L.: On NURBS: a survey. IEEE Comput. Graph. Appl. 11(1), 55–71 (1991). doi:10.1109/38.67702
Farin, G.: Curves and Surfaces for CAGD. Computing. Morgan Kaufmann (2002)
Lepetič, M., Klančar, G., Škrjanc, I., Matko, D., Potočnik, B.: Time optimal path planning considering acceleration limits. Robot. Auton. Syst. 45(3–4), 199–210 (2003). doi:10.1016/j.robot.2003.09.007
Jolly, K.G., Sreerama Kumar, R., Vijayakumar, R.: A Bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits. Robot. Auton. Syst. 57(1), 23–33 (2009). doi:10.1016/j.robot.2008.03.009
Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions - b. on the problem of osculatory interpolation - a 2nd class of approximation formulae. Q. Appl. Math. 4(2), 112–141 (1946)
Thompson, S.E., Patel, R.V.: Formulation of joint trajectories for industrial robots using b-splines. IEEE Trans. Ind. Electron. 34(2), 192–199 (1987). doi:10.1109/TIE.1987.350954
Dyllong, E., Visioli, A.: Planning and real-time modifications of a trajectory using spline techniques. Robotica 21(05), 475–482 (2003). doi:10.1017/S0263574703005009
Hodgins, J.K., O’Brien, J.F., Tumblin, J.: Perception of human motion with different geometric models. IEEE Trans. Vis. Comput. Graph. 4(4), 307–316 (1998). doi:10.1109/2945.765325
Schmid, A.J., Woern, H.: Path planning for a humanoid using NURBS curves. In: Automation Science and Engineering, 2005. IEEE international conference on, pp. 351–356 (2005)
Sungchul, J., Taehoon, K.: Tool-path generation for NURBS surface machining. In: American control conference, 2003. Proceedings of the 200, Vol. 2613, pp. 2614–2619 (2003)
Cheng, M.Y., Kuo, J.C.: Real-time NURBS command generators for CNC servo controllers. Int. J. Mach. Tools Manuf. 42(7), 801–813 (2002) doi:10.1016/S0890-6955(02)00015-9
Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C.L., Hughes, T.J.R.: Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput. Methods Appl. Mech. Eng. 196(29–30), 2943–2959 (2007). doi:10.1016/j.cma.2007.02.009
Ma, W., Kruth, J.P.: NURBS curve and surface fitting for reverse engineering. Int. J. Adv. Manuf. Technol. 14(12), 918–927 (1998). doi:10.1007/BF01179082
Piegl, L.A., Tiller, W.: Parametrization for surface fitting in reverse engineering. Comput. Aided Des. 33(8), 593–603 (2001). doi:10.1016/S0010-4485(00)00103-2
Hughes, T.J.R., Reali, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Comput. Methods Appl. Mech. Eng. 197(49–50), 4104–4124 (2008). doi:10.1016/j.cma.2008.04.006
Koyuncu, E., Inalhan, G.: A probabilistic B-spline motion planning algorithm for unmanned helicopters flying in dense 3D environments. In: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pp. 815–821 (2008)
Zhou, F., Song, B., Tian, G.: Bézier curve based smooth path planning for mobile robot. J. Inf. Comput. Sci. 8(12), 2441–2450 (2011)
Kwangjin, Y., Sukkarieh, S.: An analytical continuous-curvature path-smoothing algorithm. Robot. IEEE Trans. 26(3), 561–568 (2010). doi:10.1109/TRO.2010.2042990
Kwangjin, Y., Jung, D., Sukkarieh, S.: Continuous curvature path-smoothing algorithm using cubic Bezier spiral curves for non-holonomic robots. Adv. Robot. 27(4), 247–258 (2013). doi:10.1080/01691864.2013.755246
Walton, D.J., Meek, D.S., Ali, J.M.: Planar G2 transition curves composed of cubic Bézier spiral segments. J. Comput. Appl. Math. 157(2), 453–476 (2003). doi:10.1016/s0377-0427(03)00435-7
Huh, U.-Y., Chang, S.-R.: A G 2 continuous path-smoothing algorithm using modified quadratic polynomial interpolation. Int. J. Adv. Robot. Syst. 25(11) (2014). doi:10.5772/57340
Piazzi, A., Bianco, C.G.L., Romano, M.: η3-Splines for the smooth path generation of wheeled mobile robots. robotics-splines for the smooth path generation of wheeled mobile robots. Robot. IEEE Trans. 23(5), 1089–1095 (2007). doi:10.1109/TRO.2007.903816
Pan, J., Zhang, L., Manocha, D.: Collision-free and smooth trajectory computation in cluttered environments. Int. J. Robot. Res. 31(10), 1155–1175 (2012). doi:10.1177/0278364912453186
Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C., Kostaras, A.N.: Evolutionary algorithm based offline/online path planner for UAV navigation. Systems, Man, and Cybernetics, Part B. Cybern. IEEE Trans. 33(6), 898–912 (2003). doi:10.1109/TSMCB.2002.804370
Guarino Lo Bianco, C.: Minimum-jerk velocity planning for mobile robot applications. Robot. IEEE Trans. 29(5), 1317–1326 (2013). doi:10.1109/TRO.2013.2262744
Kunz, T., Stilman, M.: Time-optimal trajectory generation for path following with bounded acceleration and velocity. Robotics: Science and Systems, p 209 (2013)
Velenis, E., Tsiotras, P.: Minimum-time travel for a vehicle with acceleration limits: theoretical analysis and receding-horizon implementation. J. Optim. Theory Appl. 138(2), 275–296 (2008). doi:10.1007/s10957-008-9381-7
Johnson, J., Hauser, K.: Optimal acceleration-bounded trajectory planning in dynamic environments along a specified path. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp. 2035–2041 (2012)
Elbanhawi, M., Simic, M., Jazar, R.: Continuous-curvature bounded trajectory planning using parametric splines. In: Frontiers in Artificial Intelligence and Applications, vol. 262, pp. 513–522 (2014)
Kelly, A., Stentz, A.: Rough terrain autonomous mobility—part 1: A theoretical analysis of requirements. Auton. Robot. 2(5), 129–161 (1998). doi:10.1023/A:1008801421636
Ahmed, F., Deb, K.: Multi-objective path planning using spline representation. In: Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on, pp. 1047–1052 (2011)
De Boor, C.: On calculating with B-splines. J. Appro. Theory 6(1), 50–62 (1972)
Barsky, B.A., Derose, T.D.: Geometric continuity of parametric curves: constructions of geometrically continuous splines. IEEE Comput. Graph. Appl. 10(1), 60–68 (1990). doi:10.1109/38.45811
Jan, G.E., Sun, C.C., Tsai, W.C., Lin, T.H.: An O(n log n) Shortest Path Algorithm Based on Delaunay Triangulation, Mechatronics. IEEE/ASME Trans. PP(99), 1–7 (2013). doi:10.1109/TMECH.2013.2252076
Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime search in dynamic graphs. Artif. Intell. 172(14), 1613–1643 (2008). doi:10.1016/j.artint.2007.11.009
Bruce, J.R., Veloso, M.M.: Safe multirobot navigation within dynamics constraints. IEEE Proc. 94(7), 1398–1411 (2006). doi:10.1109/JPROC.2006.876915
LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. In. Iowa state university (1998)
Wein, R., van den Berg, J., Halperin, D.: Planning high-quality paths and corridors amidst obstacles. Int. J. Robot. Res. 27(11-12), 1213–1231 (2008). doi:10.1177/0278364908097213
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Elbanhawi, M., Simic, M. & Jazar, R.N. Continuous Path Smoothing for Car-Like Robots Using B-Spline Curves. J Intell Robot Syst 80 (Suppl 1), 23–56 (2015). https://doi.org/10.1007/s10846-014-0172-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-014-0172-0